タグ「最大」の検索結果

18ページ目:全460問中171問~180問を表示)
和歌山大学 国立 和歌山大学 2014年 第4問
曲線$C:y=e^x$上の点$\mathrm{P}$,$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\log t$,$\log 2t$とし,曲線$C$と直線$\ell,\ m$で囲まれた部分の面積を$S$とする.また,$\ell,\ m$の傾きをそれぞれ$\tan \alpha$,$\tan \beta$とする.ただし,$t>0$,$\displaystyle -\frac{\pi}{2}<\alpha<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\beta<\frac{\pi}{2}$である.このとき,次の問いに答えよ.

(1)$\tan \alpha,\ \tan \beta$および$S$をそれぞれ$t$を用いて表せ.
(2)$\beta-\alpha$が最大となるときの$t$の値を求めよ.
鳥取大学 国立 鳥取大学 2014年 第2問
$x$軸の正の部分を動く点$\mathrm{P}(t,\ 0) (t>0)$と$2$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(0,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を通る円の中心の座標を$t$を用いて表せ.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通り,$x$軸の正の部分に接する円の方程式を求めよ.
(3)$\angle \mathrm{APB}$の大きさを最大にする点$\mathrm{P}$の座標を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数$\theta$に対して,関係式
\[ \frac{x^2}{(\cos \theta+2)^2}+\frac{y^2}{(\sin \theta+3)^2}=1 \]
を満たす第$1$象限内の点で,積$xy$の値を最大にする点を$\mathrm{P}(\theta)$とする.

(1)$\mathrm{P}(0)$の座標を求めよ.
(2)$\displaystyle \mathrm{P}(\theta) \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$の軌跡の方程式を求めよ.
東京学芸大学 国立 東京学芸大学 2014年 第4問
$f(x)$を区間$[0,\ 1]$で定義された連続な関数とする.このとき,定積分
\[ I=\int_0^1 \left[ 2f(x) \log (x+1)-\{f(x)\}^2 \right] \, dx \]
について下の問いに答えよ.

(1)$I$の値を最大にするような$f(x)$を求めよ.
(2)$I$の最大値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第5問
$n$は自然数,$p_0$,$p_1$,$\cdots$,$p_n$は$p_0>0$,$\cdots$,$p_n>0$かつ$p_0+p_1+\cdots+p_n=1$を満たす定数とする.ポイント$0,\ 1,\ 2,\ \cdots,\ n-1,\ n$が,それぞれ$p_0,\ p_1,\ p_2,\ \cdots,\ p_{n-1},\ p_n$の確率で得られる試行$T$を考える.試行$T$を$1$回行って得られるポイントの期待値を$a$とし,$A=[a]+1$とする.ただし,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.競技者は,試行$T$を下記の各設問のルールに従って何回か行う.

(1)$k$を$1 \leqq k \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$2$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$k$以上であれば$2$回目の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$k$未満であれば$2$回目の試行$T$を行う.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
このとき賞金の期待値を$b_k$とする.$b_k$を求めよ.

(2)$(1)$の期待値$b_k$は$k$が$A$のとき最大となることを示せ.
(3)$m$を$1 \leqq m \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$3$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$m$以上であれば$2$回目以降の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$m$未満であれば$2$回目の試行$T$を行う.$2$回目のポイントが$A$以上であれば$3$回目の試行を行わない.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
\mon[$③$] $2$回目のポイントが$A$未満であれば$3$回目の試行$T$を行う.このとき,$1$回目,$2$回目のポイントは無効とし,$3$回目のポイントを賞金とする.
このとき賞金の期待値を$c_m$とする.$c_m$を求めよ.

(4)$(3)$の期待値$c_m$は$m$が$B=[b_A]+1$のとき最大となり,$c_B \geqq b_A$であることを示せ.ただし,$b_A$は$(1)$で求めた期待値$b_k$の$k=A$のときの値である.
(5)$n=5$とし,試行$T$として,$5$枚の硬貨を同時に投げ,表の出た枚数をポイントとする試行を考える.また,$b_k$,$c_m$は上記で定義したものとする.

(i) $p_0$,$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,$a$を求めよ.
(ii) $(1)$のように最大$2$回試行を行う場合,$b_k$の最大値を求めよ.
(iii) $(3)$のように最大$3$回試行を行う場合,$c_m$の最大値を求めよ.
千葉大学 国立 千葉大学 2014年 第3問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第5問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第5問
自然数$n$に対して,和
\[ S_n=1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \]
を考える.

(1)各自然数$n$に対して$2^k \leqq n$をみたす最大の整数$k$を$f(n)$で表すとき,$2$つの奇数$a_n,\ b_n$が存在して
\[ S_n=\frac{a_n}{2^{f(n)}b_n} \]
と表されることを示せ.
(2)$n \geqq 2$のとき$S_n$は整数にならないことを示せ.
(3)さらに,自然数$m,\ n (m<n)$に対して,和
\[ S_{m,n}=\frac{1}{m}+\frac{1}{m+1}+\cdots +\frac{1}{n} \]
を考える.$S_{m,n}$はどんな$m,\ n (m<n)$に対しても整数にならないことを示せ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。