タグ「最大」の検索結果

16ページ目:全460問中151問~160問を表示)
福岡教育大学 国立 福岡教育大学 2014年 第3問
$a_n=-2n+212$で定められる数列$\{a_n\}$を次のような群に分け,第$k$群には$k$個の項が入るようにする.

\quad $a_1 \qquad | \ a_2,\ a_3 \ | \ a_4,\ a_5,\ a_6 \ | \ a_7,\ a_8,\ a_9,\ a_{10} \ | \ \cdots$
第$1$群 \quad 第$2$群 \qquad 第$3$群 \qquad\quad 第$4$群

第$k$群に含まれるすべての項の和を$S_k$とするとき,次の問いに答えよ.

(1)$S_k$を求めよ.
(2)$S_k$が最大となる群に含まれる項の平均値を求めよ.
(3)$|S_k|=|S_{k+1|}$を満たす$k$を求めよ.
福岡教育大学 国立 福岡教育大学 2014年 第3問
$a$を定数とする.$a_n=-2n+a$で定められる数列$\{a_n\}$を次のような群に分け,第$k$群には$k$個の項が入るようにする.

\quad $a_1 \qquad | \ a_2,\ a_3 \ | \ a_4,\ a_5,\ a_6 \ | \ a_7,\ a_8,\ a_9,\ a_{10} \ | \ \cdots$
第$1$群 \quad 第$2$群 \qquad 第$3$群 \qquad\quad 第$4$群

第$k$群に含まれるすべての項の和を$S_k$とするとき,次の問いに答えよ.

(1)$S_k$を求めよ.
(2)$a=212$のとき,$S_k$が最大となる群に含まれる項の平均値を求めよ.
(3)$a=92$のとき,$|S_k|=|S_{k+1|}$を満たす$k$を求めよ.
琉球大学 国立 琉球大学 2014年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\pi}{4}} x \cos 2x \, dx$を求めよ.
(2)$\mathrm{AB}=\mathrm{AC}=1$である二等辺三角形$\mathrm{ABC}$において,$\mathrm{BC}=2x$,内接円の半径を$r$とおく.

\mon[$①$] $r$を$x$を用いて表せ.
\mon[$②$] $r$が最大となる$x$の値を求めよ(最大値そのものは求める必要はない).
奈良女子大学 国立 奈良女子大学 2014年 第2問
$r$を$0<r<2$をみたす実数とする.座標平面上の$4$点$\mathrm{A}(2-r,\ 2-r)$,$\mathrm{B}(-2+r,\ 2-r)$,$\mathrm{C}(-2+r,\ -2+r)$,$\mathrm{D}(2-r,\ -2+r)$を頂点とする正方形を考える.この正方形$\mathrm{ABCD}$の周上を動く点を$\mathrm{P}$とし,$\mathrm{P}$を中心とする半径$r$の円を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{AB}$上を$\mathrm{A}$から$\mathrm{B}$まで動くとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積を求めよ.
(2)点$\mathrm{P}$が正方形$\mathrm{ABCD}$の周上を一周するとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積$S$を求めよ.
(3)$(2)$で求めた$S$を最大にする$r$の値を求めよ.
三重大学 国立 三重大学 2014年 第5問
実数$a$に対して,下の$4$つの条件$p,\ q,\ r,\ s$を考える.ただし,実数$k$に対して,$[k]$は$k$以下の最大の整数を表し,$\langle k \rangle$は$k$以上の最小の整数を表すとする.たとえば,$k=2.15$のとき,$[k]=2$であり,$\langle k \rangle=3$である.また,$|k|$は$k$の絶対値を表す.

$p:x^2+4x+a^2=0$を満たす実数$x$が存在する.
$q:[a]<\langle a \rangle$
$\displaystyle r:|a-1.5|<\frac{1}{|a-1.5|+1.5}$
$\displaystyle s:0<a<\pi$,かつ,$\displaystyle \sin \left( 2a-\frac{\pi}{4} \right)+\sin \left( 2a+\frac{\pi}{4} \right)=0$

上の$p,\ q,\ r,\ s$それぞれについて,条件を満たす$a$の範囲を求めよ.さらに,以下の$①$,$②$,$③$それぞれについて,$p,\ q,\ r,\ s$の中から,あてはまるものを全て答えよ.

$①$ $p$であるための十分条件である.
$②$ $q$であるための十分条件である.
$③$ $r$であるための十分条件である.
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)標高$376 \, \mathrm{m}$の地点から富士山に登りはじめた.一般に,$2$地点の大気圧の比はその$2$地点の高度差の指数関数である.この日の大気圧は,高度が$850 \, \mathrm{m}$上昇するごとに$10 \, \%$ずつ減少していた.登りはじめた地点の大気圧は$990 \, \mathrm{hPa}$であった.この日の富士山の山頂$3776 \, \mathrm{m}$での大気圧は何$\mathrm{hPa}$か.答は小数第$1$位を四捨五入し,整数で答えよ.
(2)ある店において,原価が$200$円,定価が$350$円の商品$\mathrm{A}$の$1$日の売り上げ総数を$N$とする.$\mathrm{A}$の売り値が定価通りのときには$N=35$であり,定価から原価まで売り値を$10$円下げるごとに,$N$は$5$ずつ増えることがわかっている.また,売り値は定価を超えず,原価も下回らないとする.この店での$1$日の$\mathrm{A}$の売り上げ全体の利益を最大にする売り値と,そのときの$N$を求めよ.
(3)$\log_23,\ \log_47,\ \log_828$を小さい順に並べよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(-1,\ 0,\ 0)$の定める平面を$\alpha$とする.点$\mathrm{P}(2,\ 3,\ z)$が平面$\alpha$上にあるとき,$z$の値を求めよ.
山梨大学 国立 山梨大学 2014年 第2問
$a$は定数で$0 \leqq a \leqq 1$とする.$3$次関数$f(x)=(x+1)x(x-a)$および$g(x)=f(x-1)$を考える.

(1)$2$曲線$y=f(x)$と$y=g(x)$のすべての交点の$x$座標を求めよ.
(2)$2$曲線$y=f(x)$と$y=g(x)$で囲まれた部分を$A$とする.$A$の面積$S(a)$および$A$の$x \leqq a$をみたす部分の面積$S_1(a)$を求めよ.
(3)$(2)$の$A$で不等式$x \geqq a$をみたす部分の面積を$S_2(a)$とする.$S_2(a)$が最大となるときの$a$の値とその最大値を求めよ.
山梨大学 国立 山梨大学 2014年 第3問
座標平面上の原点を$\mathrm{O}$,曲線$y=x^3$上の点$\mathrm{P}(t,\ t^3) (t>0)$における接線と$x$軸との交点を$\mathrm{Q}$とし,また$\alpha=\angle \mathrm{POQ}$,$\beta=\angle \mathrm{OPQ}$とする.

(1)点$\mathrm{Q}$の座標を$t$を用いた式で表せ.
(2)$\tan \alpha$および$\tan \beta$を$t$を用いた式で表せ.
(3)$\tan \beta$が最大となるような$t$とそのときの$\beta$の値を求めよ.
山梨大学 国立 山梨大学 2014年 第4問
楕円$\displaystyle E:\frac{x^2}{3^2}+\frac{y^2}{2^2}=1$および直線$\ell:y=kx (k>0)$とそれらの交点$\mathrm{A}$,$\mathrm{B}$について,次の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを$k$を用いた式で表せ.
(2)楕円$E$上の点$\mathrm{P}$での接線が直線$\ell$に平行なとき,点$\mathrm{P}$の座標を$k$を用いた式で表せ.
(3)楕円$E$上の点$\mathrm{C}$を三角形$\mathrm{ABC}$の面積が最大となる点とするとき,三角形$\mathrm{ABC}$の面積を求めよ.
大分大学 国立 大分大学 2014年 第3問
$100$から$999$までの自然数の集合を全体集合$U$とし,そのうち$14$で割ると$3$余るものの集合を$A$,$9$の倍数の集合を$B$とおく.

(1)$A,\ B$の要素の個数を求めなさい.
(2)$A \cap B$の要素のうち,最小のものと最大のものを求めなさい.
(3)$U$の要素が$1$つずつ書かれた玉の入った袋から玉を$2$個取り出す.このとき,$2$個の玉に書かれている数がいずれも$14$で割ると$3$余り,かつ$9$で割り切れない場合の確率を求めなさい.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。