タグ「最大」の検索結果

14ページ目:全460問中131問~140問を表示)
京都薬科大学 私立 京都薬科大学 2015年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$2$次関数$f(x)=ax^2+bx+2a^2$は,$x=-1$で最大値をとり,$f(1)=14$を満たす.このとき,$a=[ア]$,$b=[イ]$で,$f(x)$の最大値は$[ウ]$である.
(2)$1$つのさいころを$1$の目が出るまで投げ続ける.ただし,投げる回数は最大$100$回とする.このとき,ちょうど$n$回($n<100$)投げてやめる確率は$[エ]$で,投げる回数が$n$回以下($n<100$)でやめる確率は$[オ]$である.また,$1$の目が$2$回出るまで投げ続けるとき(最大$100$回),投げる回数が$n$回以下($n<100$)でやめる確率は$[カ]$である.
(3)平面上の$\triangle \mathrm{OAB}$において,$\mathrm{OA}=4$,$\mathrm{OB}=3$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{2}{3}$が成立しているとする.このとき,$\mathrm{AB}=[キ]$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表し,$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{5}{2} \overrightarrow{a}+2 \overrightarrow{b}$を満たす点$\mathrm{C}$をとれば,$\mathrm{AC}=[ク]$,$\cos \angle \mathrm{BAC}=[ケ]$が成立する.
(4)不等式$\sin 2\theta+\sin 4\theta>\sin 3\theta$を満たす$\theta$の範囲は$[コ]<\theta<[サ]$および$[シ]<\theta<[ス]$である.ただし,$0<\theta<\pi$とする.
(5)ある正の数$a$を底としたときの,$2$と$5$の対数の近似値がそれぞれ$\log_a 2=0.693$,$\log_a 5=1.609$であるとする.また,$\sqrt[4]{10}=1.778$とする.指数関数$y=pa^{-qx}$($p,\ q$は正の数)において,$x=1$のとき$y=10$,$x=5$のとき$y=1$となるならば,$p=[セ]$,$q=[ソ]$である.また,$y$がちょうど$p$の半分となるときの$x$の値は$[タ]$である.なお,解答は小数点以下$2$桁で示すこと(必要ならば小数第$3$位を四捨五入せよ).
久留米大学 私立 久留米大学 2015年 第1問
原点を中心とする半径$5$の円周上に,$2$点$\mathrm{A}(0,\ -5)$,$\mathrm{B}(4,\ -3)$がある.

(1)円周上に,$\triangle \mathrm{ABC}$が直角三角形になるようにとった点$\mathrm{C}$の座標は$[$1$]$である.
(2)円周上に,$\triangle \mathrm{ABC}$が二等辺三角形になるようにとった点$\mathrm{C}$の座標は$[$2$]$である.
(3)円に内接し,線分$\mathrm{AB}$にも接する円のうち,直径が最大の円の方程式は$[$3$]$である.
広島国際学院大学 私立 広島国際学院大学 2015年 第5問
ノーマルオレンジ($1$杯$100$円)とスペシャルオレンジ($1$杯$150$円)の$2$種類のドリンクを販売しようとしている.ノーマルオレンジには,オレンジ$100 \, \mathrm{g}$とヨーグルト$200 \, \mathrm{g}$が必要となる.スペシャルオレンジには,オレンジ$200 \, \mathrm{g}$とヨーグルト$100 \, \mathrm{g}$が必要となる.しかし,いま使えるオレンジが$6 \, \mathrm{kg}$,ヨーグルトが$9 \, \mathrm{kg}$しかない.

(1)ノーマルオレンジを$x$杯,スペシャルオレンジを$y$杯作るとき,使えるオレンジの重量に関する条件を不等式で表しなさい.
(2)$(1)$と同様に,使えるヨーグルトの重量に関する条件を不等式で表しなさい.
(3)売り上げを計算する式を$x$と$y$で表しなさい.
(4)売り上げが最大となるのは,ノーマルオレンジとスペシャルオレンジをそれぞれ何杯作ったときか求めなさい.そのときの売り上げも求めなさい.
奈良県立医科大学 公立 奈良県立医科大学 2015年 第10問
$f(x)=k(1-x)^2x^3$とする.$0 \leqq x \leqq 1$の範囲で$f(x)$が最大となる$x$の値を求めよ.ただし,$k$は
\[ \int_0^1 k(1-x)^2x^3 \, dx=1 \]
を満たす実数とする.
岐阜薬科大学 公立 岐阜薬科大学 2015年 第1問
$2$点$\mathrm{A}(x,\ y)$,$\mathrm{B}(X,\ Y)$が原点$\mathrm{O}$を通る同一直線上にある.$\mathrm{OA} \cdot \mathrm{OB}=4$を満たし,$\mathrm{A}$と$\mathrm{B}$は原点$\mathrm{O}$に対し反対側にある.次の問いに答えよ.

(1)点$\mathrm{A}(x,\ y)$を$X$と$Y$を用いて表せ.
(2)点$\mathrm{A}$が直線$y=-2x-2$上を動くとき,

(i) 点$\mathrm{B}$の軌跡,
(ii) $\displaystyle\frac{\mathrm{OB}}{\mathrm{AB}}$が最大となる点$\mathrm{A}$および点$\mathrm{B}$の座標

を求めよ.
会津大学 公立 会津大学 2015年 第4問
$n$を自然数とするとき,以下の問いに答えよ.

(1)白玉$4$個,赤玉$3$個が入っている袋から,$2$個の玉を同時に取り出すとき,白玉と赤玉が$1$個ずつ出る確率を求めよ.
(2)白玉$4$個,赤玉$n$個が入っている袋から,$2$個の玉を同時に取り出すとき,白玉と赤玉が$1$個ずつ出る確率$p_n$を求めよ.
(3)$p_n>p_{n+1}$をみたす$n$の範囲を求めよ.
(4)$p_n$が最大となる$n$をすべて求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第1問
$n$を自然数とする.数字$1$が書かれたカードが$n$枚,数字$4$が書かれたカードが$1$枚,$\triangle$が書かれたカードが$1$枚,合計$n+2$枚のカードがある.これら$n+2$枚のカードから$2$枚のカードを同時に引き,カードに書かれた数字の合計を得点とするが,引いたカードの中に$\triangle$が書かれたカードが含まれる場合には,得点は$0$点とする.

(1)得点が$0$点となる確率,得点が$2$点となる確率,得点が$5$点となる確率をそれぞれ求めよ.
(2)得点の期待値を求めよ.
(3)$(2)$で求めた期待値を$a_n$とおくとき,$a_{n+1}-a_n$の符号を調べることにより,$a_n$が最大になる$n$をすべて求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第1問
$n$を自然数とする.数字$1$が書かれたカードが$n$枚,数字$4$が書かれたカードが$1$枚,$\triangle$が書かれたカードが$1$枚,合計$n+2$枚のカードがある.これら$n+2$枚のカードから$2$枚のカードを同時に引き,カードに書かれた数字の合計を得点とするが,引いたカードの中に$\triangle$が書かれたカードが含まれる場合には,得点は$0$点とする.

(1)得点が$0$点となる確率,得点が$2$点となる確率,得点が$5$点となる確率をそれぞれ求めよ.
(2)得点の期待値を求めよ.
(3)$(2)$で求めた期待値を$a_n$とおくとき,$a_{n+1}-a_n$の符号を調べることにより,$a_n$が最大になる$n$をすべて求めよ.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2015年 第3問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$1$の円$C$と点$\mathrm{A}(-1,\ 0)$を考える.また,円$C$上で点$\mathrm{A}$と異なる点を$\mathrm{P}(\cos 2\theta,\ \sin 2\theta)$とおく.ただし,$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$を満たす.線分$\mathrm{AP}$の中点を$\mathrm{M}$とし,線分$\mathrm{AP}$の垂直$2$等分線と円$C$の交点を各々$\mathrm{Q}$,$\mathrm{R}$とする.ただし,$2$点$\mathrm{Q}$,$\mathrm{R}$は,円$C$上に反時計回りに$\mathrm{ARPQ}$の順に並ぶようにとる.以下の問題に答えよ.

(1)中点$\mathrm{M}$の座標を$\theta$を用いて表せ.
(2)$2$点$\mathrm{Q},\ \mathrm{R}$の座標を$\theta$を用いて表せ.
(3)線分$\mathrm{QR}$の長さを求めよ.また,線分$\mathrm{AP}$の長さを$\theta$を用いて表せ.
(4)四角形$\mathrm{ARPQ}$の面積を$S$とおく.面積$S$を$\theta$を用いて表せ.また,面積$S$が最大となるとき,$\theta$の値と面積$S$を求めよ.
(5)$\triangle \mathrm{APQ}$と$\triangle \mathrm{ARP}$の面積を$\theta$を用いて表せ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。