タグ「最大」の検索結果

11ページ目:全460問中101問~110問を表示)
上智大学 私立 上智大学 2015年 第3問
ある工場では製品$\mathrm{X}$,$\mathrm{Y}$を生産している.それらを生産するには,原料$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が必要である.$\mathrm{X}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$1 \, \mathrm{kg}$,$\mathrm{B}$が$4 \, \mathrm{kg}$,$\mathrm{C}$が$1 \, \mathrm{kg}$必要である.$\mathrm{Y}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$3 \, \mathrm{kg}$,$\mathrm{B}$が$3 \, \mathrm{kg}$,$\mathrm{C}$が$2 \, \mathrm{kg}$必要である.原料の在庫はそれぞれ,$\mathrm{A}$が$23 \, \mathrm{kg}$,$\mathrm{B}$が$47 \, \mathrm{kg}$,$\mathrm{C}$が$c \, \mathrm{kg}$である.また,$\mathrm{X}$を生産すると$1 \, \mathrm{kg}$あたり$p$万円,$\mathrm{Y}$を生産すると$1 \, \mathrm{kg}$あたり$q$万円の利益がある.ただし,$c>0$,$p>0$,$q>0$とする.以下,在庫にある原料のみを用いて生産を行うものとする.

(1)$c=17$,$p=2$,$q=5$のとき,$\mathrm{X}$を$[ヌ] \, \mathrm{kg}$,$\mathrm{Y}$を$[ネ] \, \mathrm{kg}$生産すれば,最大の利益を得る.
(2)$c=17$のとき,最大の利益を得る$\mathrm{X}$と$\mathrm{Y}$の生産量の組がただ一つに定まるための必要十分条件を$\displaystyle \frac{p}{q}$の値を用いて表すと,

$\displaystyle 0<\frac{p}{q}<\frac{[ノ]}{[ハ]} \quad \text{または} \quad \frac{[ヒ]}{[フ]}<\frac{p}{q}<\frac{[ヘ]}{[ホ]}$

$\displaystyle \text{または} \quad \frac{[マ]}{[ミ]}<\frac{p}{q}<\frac{[ム]}{[メ]} \quad \text{または} \quad \frac{[モ]}{[ヤ]}<\frac{p}{q}$


である.ただし,$\displaystyle 0<\frac{[ヒ]}{[フ]}<\frac{[マ]}{[ミ]}<\frac{[モ]}{[ヤ]}$とする.

(3)$\mathrm{X}$と$\mathrm{Y}$の生産量にかかわらず原料$\mathrm{C}$が余るための必要十分条件を$c$の値を用いて表すと,$c>[ユ]$である.
上智大学 私立 上智大学 2015年 第3問
実数からなる集合$A,\ B,\ C$を以下のように定義する.

$\displaystyle A=\left\{ x \ \biggl| \ \sin \frac{\pi}{2}x>-\frac{1}{7}x \right\}$

$B=\{x \ | \ 0<x<b\}$
$C=\{x \ | \ x \geqq c\}$

ただし,$b,\ c$は正の実数とする.

(1)$-1 [え] A$である.また,$5 [お] A$である.
\begin{screen}
$[え]$,$[お]$の選択肢:
\[ \mathrm{(a)} \ \in \quad \mathrm{(b)} \ \notin \quad \mathrm{(c)} \ \ni \quad \mathrm{(d)} \ \notni \quad \mathrm{(e)} \ = \quad \mathrm{(f)} \ \subset \quad \mathrm{(g)} \ \supset \]
\end{screen}
(2)$B \cap C$が空集合であるための必要十分条件は$[か]$である.
\begin{screen}
$[か]$の選択肢:

\begin{tabular}{llll}
$\mathrm{(a)} \ b=c$ \phantom{AA} & $\mathrm{(b)} \ b<c$ \phantom{AA} & $\mathrm{(c)} \ b \leqq c$ \phantom{AA} & $\mathrm{(d)} \ b>c$ \phantom{AA} \\
$\mathrm{(e)} \ b \geqq c$ & $\mathrm{(f)} \ b \leqq 1$ & $\mathrm{(g)} \ b \leqq 1 \text{かつ} c \geqq 1$ &
\end{tabular}

\end{screen}
(3)$A \supset B$となる$b$のうち,整数で最大のものは$[タ]$である.また,$A \supset C$となる$c$のうち,整数で最小のものは$[チ]$である.
(4)$S$は実数からなる集合とする.「集合$S$が連結である」とは,「$S$のどの$2$つの要素$x,\ y$に対しても,

条件:実数$z$が$x<z<y$を満たすならば$z \in S$

が成り立つ」ことである.
$A \cap B$が連結であるような$b$のうち,整数で最大のものは$[ツ]$である.また,$A \cap C$が連結であるような$c$のうち,整数で最小のものは$[テ]$である.
東京理科大学 私立 東京理科大学 2015年 第2問
$t$を$0<t<1$を満たす実数として,関数$f(x)$を
\[ f(x)=-x^2+(1+t^2)x-t^2 \]
と定める.座標平面において,原点$\mathrm{O}$から放物線$y=f(x)$へ引いた接線のうち,接点の$x$座標が正のものを考える.その接点を$\mathrm{P}(p,\ f(p))$とおく.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)放物線$y=f(x)$の$x \leqq p$の部分,$x$軸,直線$x=p$で囲まれる図形の面積を$S_1$とする.$S_1$を$t$を用いて表せ.
(3)線分$\mathrm{OP}$,$x$軸,直線$x=p$で囲まれる図形の面積を$S_2$とし,$(2)$の$S_1$に対して$S=S_2-S_1$とおく.$t$が$0<t<1$の範囲を動くとき$S$を最大にする$t$の値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$がある.実数$a,\ b$に対し,点$\mathrm{P}(4a,\ 3b)$,点$\mathrm{Q}(4a-4,\ 3b)$,点$\mathrm{R}(4a,\ 3b-3)$をとる.三角形$\mathrm{PQR}$と三角形$\mathrm{OAB}$の共通部分が六角形となるとき,六角形の面積を$S$とする.次の設問に答えよ.

(1)$S$を$a,\ b$を用いて表せ.
(2)$S$を最大とする$a,\ b$の値と,そのときの$S$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
東京理科大学 私立 東京理科大学 2015年 第6問
座標平面上に$3$点
\[ \mathrm{P}_1(25,\ 0),\quad \mathrm{P}_2(0,\ 0),\quad \mathrm{P}_3(3,\ 4) \]
をとる.このとき,三角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3$の外接円$C$の半径は$\displaystyle \frac{[ア][イ]}{[ウ]} \sqrt{[エ]}$である.$\mathrm{P}_3$を通り$x$軸に平行な直線と$C$の交点のうち$\mathrm{P}_3$と異なるものを$\mathrm{P}_4$とする.四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の$2$本の対角線の交点を$\mathrm{Q}$とするとき
\[ \sin (\angle \mathrm{P}_2 \mathrm{QP}_3)=\frac{[オ][カ]}{[キ][ク][ケ]} \]
である.$C$の弧$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3$に対する中心角を$\theta$とするとき
\[ \sin \theta=-\frac{[コ][サ]}{[シ][ス]} \]
となる.弧$\mathrm{P}_1 \mathrm{P}_4 \mathrm{P}_3$上の点$\mathrm{R}$を,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{R}$の面積が最大になるようにとる.そのとき四角形の面積は$\displaystyle \frac{[セ][ソ][タ]}{[チ]}$である.
東京理科大学 私立 東京理科大学 2015年 第5問
$n$を自然数とする.$k=1,\ 2,\ 3$に対して,次の条件$\mathrm{P}_k$を考える.

$\mathrm{P}_k: \quad k \leqq r \leqq n-k$を満たすすべての自然数$r$に対して,$\comb{n}{r}$は偶数である.

(1)$2 \leqq n \leqq 20$,$k=1$とする.$\mathrm{P}_1$を満たす$n$は全部で$[ア]$個ある.このうち,最大のものは$[イ][ウ]$である.
(2)$4 \leqq n \leqq 1000$,$k=2$とする.$\mathrm{P}_2$を満たす$n$は全部で$[エ][オ]$個ある.このうち,最大のものは$[カ][キ][ク]$である.
(3)$6 \leqq n \leqq {10}^{16}$,$k=3$とする.$\mathrm{P}_3$を満たす$n$は全部で$[ケ][コ][サ]$個ある.
(注意:$0.3010<\log_{10}2<0.3011$)
北里大学 私立 北里大学 2015年 第2問
$k$は定数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$と直線$x+\sqrt{3}=ky$の共有点を$\mathrm{P}$,$\mathrm{P}^\prime$とする.また楕円の$2$つの焦点を$\mathrm{F}(\sqrt{3},\ 0)$,$\mathrm{F}^\prime (-\sqrt{3},\ 0)$とする.

(1)$\triangle \mathrm{PP}^\prime \mathrm{F}$の面積を$k$を用いて表せ.
(2)$\triangle \mathrm{PP}^\prime \mathrm{F}$の内接円の半径を最大にする$k$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
東洋大学 私立 東洋大学 2015年 第4問
一般項が$\displaystyle a_n=\sin \frac{3n \pi}{7}$で定義される数列$\{a_n\}$の最初の$n$項の和を$\displaystyle S_n=\sum_{k=1}^n a_k$とおく.次の各問に答えよ.

(1)$a_n>0$となるための必要十分条件は,$n$を$[アイ]$で割った余りが$1$,$2$,$[ウ]$,$[エ]$,$[オカ]$,$[キク]$のいずれかとなることである.ただし,$[ウ]<[エ]<[オカ]<[キク]$とする.
(2)任意の自然数$n$に対し,$a_{n+\mkakko{ケ}}=-a_n$が成り立つ.
(3)$a_n$が最大となるための必要十分条件は,$n$を$[コサ]$で割った余りが$[シ]$または$[ス]$となることである.ただし,$[シ]<[ス]$とする.
(4)$S_n$が最大となるための必要十分条件は,$n$を$[セソ]$で割った余りが$[タ]$または$[チツ]$となることである.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。