「最大値」について
タグ「最大値」の検索結果
(94ページ目:全1143問中931問~940問を表示) 国立 鹿児島大学 2011年 第3問
$0 \leqq x \leqq 1$とする.このとき,関数$f(x)$を
\[ f(x)=\int_0^1 |t^2-xt| \, dt \]
と定義する.次の各問いに答えよ.
(1)$t$の関数$g(t)=|t^2-xt|$のグラフの概形をかけ.
(2)$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値を求めよ.
\[ f(x)=\int_0^1 |t^2-xt| \, dt \]
と定義する.次の各問いに答えよ.
(1)$t$の関数$g(t)=|t^2-xt|$のグラフの概形をかけ.
(2)$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値を求めよ.
国立 福井大学 2011年 第5問
Oを原点とする座標平面上に3点A$(1,\ 0)$,B$(1,\ 1)$,C$(0,\ c)$がある.ただし,$c$は正の定数とする.$t$を$0 \leqq t \leqq 1$を満たす実数とし,線分AB,BCを$t:(1-t)$に内分する点をそれぞれP,Qとする.ただし,例えば線分ABを$t:(1-t)$に内分する点は,$t=0$のときはA,$t=1$のときはBとする.$\triangle$OPQの面積を$S(t)$とするとき,以下の問いに答えよ.
(1)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
(2)$\displaystyle I=\int_0^1 S(t) \, dt$の値が台形OABCの面積の$\displaystyle \frac{2}{5}$倍に等しくなるとき,$c$と$I$の値をそれぞれ求めよ.
(3)$0 \leqq t <1$に対し,線分QOを$t:(1-t)$に内分する点をRとし,$\triangle$OPRの面積を$T(t)$とする.$T(t)$が$\displaystyle t=\frac{1}{3}$で最大となるような$c$の値と,そのときの$T(t)$の最大値を求めよ.
(1)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
(2)$\displaystyle I=\int_0^1 S(t) \, dt$の値が台形OABCの面積の$\displaystyle \frac{2}{5}$倍に等しくなるとき,$c$と$I$の値をそれぞれ求めよ.
(3)$0 \leqq t <1$に対し,線分QOを$t:(1-t)$に内分する点をRとし,$\triangle$OPRの面積を$T(t)$とする.$T(t)$が$\displaystyle t=\frac{1}{3}$で最大となるような$c$の値と,そのときの$T(t)$の最大値を求めよ.
国立 お茶の水女子大学 2011年 第3問
Oを原点とする座標平面上に,方程式$x^2+4y^2=4$で表される楕円$E$がある.楕円$E$の外部の点P$(p,\ q)$から$E$に引いた2本の接線を$\ell_1,\ \ell_2$とする.
(1)$p \neq \pm 2$のとき,$\ell_1,\ \ell_2$の傾きをそれぞれ$k_1,\ k_2$とする.$k_1,\ k_2$の和と積を$p,\ q$を用いて表せ.
(2)$\ell_1$と$\ell_2$が垂直となるような点Pの軌跡を求めよ.
(3)長方形ABCDの各辺が楕円$E$に接するとき,OAとABのなす角を$\theta$とする.長方形ABCDの面積を$\theta$を用いて表せ.
(4)(3)の長方形ABCDの面積の最大値と最小値を求めよ.
(1)$p \neq \pm 2$のとき,$\ell_1,\ \ell_2$の傾きをそれぞれ$k_1,\ k_2$とする.$k_1,\ k_2$の和と積を$p,\ q$を用いて表せ.
(2)$\ell_1$と$\ell_2$が垂直となるような点Pの軌跡を求めよ.
(3)長方形ABCDの各辺が楕円$E$に接するとき,OAとABのなす角を$\theta$とする.長方形ABCDの面積を$\theta$を用いて表せ.
(4)(3)の長方形ABCDの面積の最大値と最小値を求めよ.
国立 お茶の水女子大学 2011年 第1問
$xy$平面上の$2$つの放物線$C_1,\ C_2$を考える.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]
(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]
(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
国立 お茶の水女子大学 2011年 第1問
$xy$平面上の$2$つの放物線$C_1,\ C_2$を考える.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]
(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]
(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
国立 小樽商科大学 2011年 第3問
次の[ ]の中を適当に補いなさい.
(1)$m>0$とする.放物線$y=x^2$と放物線$y=x(m-x)$とで囲まれた図形の面積$S$を$m$で表せば,$S=[ ]$.
(2)$\cos 2\theta-\cos \theta+1$の最大値を$M$,最小値を$m$とすれば,$(M,\ m)=[ ]$.
(3)10段の階段を1段ずつ,1段飛ばし,2段飛ばしの3種類の登り方を自由に使って登ることができるものとする.このとき,10段を登る方法は全部で[ ]通りある.
(1)$m>0$とする.放物線$y=x^2$と放物線$y=x(m-x)$とで囲まれた図形の面積$S$を$m$で表せば,$S=[ ]$.
(2)$\cos 2\theta-\cos \theta+1$の最大値を$M$,最小値を$m$とすれば,$(M,\ m)=[ ]$.
(3)10段の階段を1段ずつ,1段飛ばし,2段飛ばしの3種類の登り方を自由に使って登ることができるものとする.このとき,10段を登る方法は全部で[ ]通りある.
国立 帯広畜産大学 2011年 第2問
次の各問に解答しなさい.
(1)円$x^2+y^2=4$と放物線$\displaystyle y=-\frac{1}{2}(2+\sqrt{2})x^2+2$との共有点の個数とすべての共有点の座標を求めなさい.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
(2+\sqrt{2})x^2+2y \geqq 4
\end{array}
\right. \]
の表す領域$R$を図示し,領域$R$の面積を求めなさい.
(3)$x^2+y^2 \leqq 4$のとき,$(2+\sqrt{2})x^2+2y$の最大値と最小値を求めなさい.
(1)円$x^2+y^2=4$と放物線$\displaystyle y=-\frac{1}{2}(2+\sqrt{2})x^2+2$との共有点の個数とすべての共有点の座標を求めなさい.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
(2+\sqrt{2})x^2+2y \geqq 4
\end{array}
\right. \]
の表す領域$R$を図示し,領域$R$の面積を求めなさい.
(3)$x^2+y^2 \leqq 4$のとき,$(2+\sqrt{2})x^2+2y$の最大値と最小値を求めなさい.
国立 福井大学 2011年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \ (a>b>0)$上に2点$\mathrm{P}(0,\ -b)$,$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$である.$\mathrm{Q}$における$C$の接線を$\ell$とし,$\mathrm{P}$を通り$\ell$に平行な直線と$C$との交点のうち$\mathrm{P}$と異なるものを$\mathrm{R}$とおく.このとき以下の問いに答えよ.
(1)$\mathrm{R}$の座標を求めよ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$\triangle \mathrm{PQR}$の面積の最大値とそのときの$\mathrm{Q}$の座標を求めよ.
(3)$C$の焦点のうち$x$座標が正のものを$\mathrm{F}$とする.(2)で求めた$\mathrm{Q}$の$x$座標と$\mathrm{F}$の$x$座標の大小を比較せよ.
(1)$\mathrm{R}$の座標を求めよ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$\triangle \mathrm{PQR}$の面積の最大値とそのときの$\mathrm{Q}$の座標を求めよ.
(3)$C$の焦点のうち$x$座標が正のものを$\mathrm{F}$とする.(2)で求めた$\mathrm{Q}$の$x$座標と$\mathrm{F}$の$x$座標の大小を比較せよ.
国立 長崎大学 2011年 第1問
$f(x)=1-x^2$とし,曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$は$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$の範囲で動くものとする.原点と点$\mathrm{P}$の$2$点を通る直線を$\ell$,点$\mathrm{P}$における$y=f(x)$の接線を$m$とする.このとき,次の各問いに答えよ.
(1)$2$直線$\ell$と$m$の方程式を求めよ.
(2)$x \geqq 0$において,$y$軸と曲線$y=f(x)$および直線$\ell$で囲まれた図形の面積を$S_1(a)$とし,$y$軸と曲線$y=f(x)$および直線$m$で囲まれた図形の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を$a$を用いて表せ.
(3)$S_1(a)=2S_2(a)$を満たす$a$の値を求めよ.
(4)$S_1(a)-S_2(a)$の最大値と最小値を求めよ.また,そのときの$a$の値を求めよ.
(1)$2$直線$\ell$と$m$の方程式を求めよ.
(2)$x \geqq 0$において,$y$軸と曲線$y=f(x)$および直線$\ell$で囲まれた図形の面積を$S_1(a)$とし,$y$軸と曲線$y=f(x)$および直線$m$で囲まれた図形の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を$a$を用いて表せ.
(3)$S_1(a)=2S_2(a)$を満たす$a$の値を求めよ.
(4)$S_1(a)-S_2(a)$の最大値と最小値を求めよ.また,そのときの$a$の値を求めよ.
国立 宮城教育大学 2011年 第4問
次の問いに答えよ.
(1)$0 \leqq \theta<2\pi$とするとき,不等式$\sin 2 \theta-\sqrt{3}\cos 2 \theta \leqq \sqrt{3}$を解け.
(2)$x,\ y$が不等式$|x-2| \leqq 2y \leqq -|x-2|+4$を満たすとき,$x^2+(y+4)^2$の最大値を求めよ.
(1)$0 \leqq \theta<2\pi$とするとき,不等式$\sin 2 \theta-\sqrt{3}\cos 2 \theta \leqq \sqrt{3}$を解け.
(2)$x,\ y$が不等式$|x-2| \leqq 2y \leqq -|x-2|+4$を満たすとき,$x^2+(y+4)^2$の最大値を求めよ.