タグ「最大値」の検索結果

92ページ目:全1143問中911問~920問を表示)
愛知教育大学 国立 愛知教育大学 2011年 第2問
$1$辺の長さが$2$の正方形の紙を用意し,頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$, \\
$\mathrm{A}_4$と名づける.右図のように,正方形の各辺を底辺とする高さ \\
$1-t \ (0<t<1)$の$4$つの二等辺三角形$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{B}_1$, \\
$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{B}_2$,$\triangle \mathrm{A}_3 \mathrm{A}_4 \mathrm{B}_3$,$\triangle \mathrm{A}_4 \mathrm{A}_1 \mathrm{B}_4$を正方形から切り離す. \\
そして,4本の線分$\mathrm{B}_1 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{B}_3$,$\mathrm{B}_3 \mathrm{B}_4$,$\mathrm{B}_4 \mathrm{B}_1$で紙を折り, \\
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$が1点になるように辺を貼り合わせて四角すいを作る.このとき,以下の問いに答えよ.
\img{409_2566_2011_1}{55}


(1)この四角すいの表面積$S$を$t$の式で表せ.
(2)この四角すいの体積$V$を$t$の式で表せ.
(3)$\displaystyle \left( \frac{V}{S} \right)^2$を$f(t)$とおくとき,$f(t)$が3次関数になることを示し,$f(t)$の最大値とそのときの$t$の値を求めよ.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)定数$a,\ b$を用いて,$\sin \theta+\cos \theta$を$a\sin (\theta+b)$の形に表せ.ただし,$a>0, 0 \leqq b < 2\pi$とする.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta + \cos \theta$の最大値と最小値を求めよ.
(3)$t=\sin \theta + \cos \theta$とおくとき,$\sin \theta \cdot \cos \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta \cdot \cos \theta$の最大値と最小値を求めよ.
(4)$t=\sin \theta + \cos \theta$とおくとき,$\sin^3 \theta + \cos^3 \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin^3 \theta + \cos^3 \theta$の最大値と最小値を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第5問
座標空間内で点Q$(a,\ b,\ c)$を中心とする半径$r$の球を$B$とし,$B$は各座標平面と交わる位置にあるとする.$B$が$xy$平面によって切り取られる立体のうち,Qを含む方を$B_1$,切断面を$D_1$とする.また$B$が$xz$平面によって切り取られる図形のうち,Qを含む方を$B_2$,切断面を$D_2$とする.$D_1$の面積が$8\pi$,$D_2$の面積が$12\pi$,$D_1$と$D_2$が交わってできる線分の長さが4のとき,以下の問いに答えよ.

(1)$D_1,\ D_2$のそれぞれの中心と半径を$a,\ b,\ c,\ r$を用いて表せ.
(2)$b,\ c,\ r$の値を求めよ.
(3)$B_1$と$B_2$の共通部分が$yz$平面によって切り取られた切断面を$D_3$とする.$a$を動かしたときの$D_3$の面積の最大値とそのときの点Qの座標Q$(a,\ b,\ c)$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第4問
空間内の四面体OABCについて,$\angle \text{OAC}=\angle \text{OAB}=90^\circ,\ \angle \text{BOC}=\alpha,\ \angle \text{COA}=\beta,\ \angle \text{AOB}=\gamma,\ \text{OA}=1$とする.ただし,$\alpha,\ \beta,\ \gamma$はすべて鋭角で,$\displaystyle \cos \alpha=\frac{1}{4},\ \cos \beta=\frac{1}{\sqrt{3}},\ \cos \gamma=\frac{1}{\sqrt{3}}$である.三角形ABCの外接円を$S$とし,その中心をPとする.以下の問に答えよ.

(1)辺BCの長さを求めよ.
(2)$\theta=\angle \text{BAC}$とするとき,$\cos \theta$の値を求めよ.
(3)線分OPの長さを求めよ.
(4)円$S$の周上に点Dをとり,線分ADと線分DBの長さをそれぞれ$\text{AD}=x,\ \text{DB}=y$とする.$x+y$の最大値とそれを与える$x,\ y$を求めよ.
電気通信大学 国立 電気通信大学 2011年 第1問
$xy$平面上の曲線$C:y=\log x$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.

(1)曲線$C$上の点$\mathrm{P}(t,\ \log t)$における$C$の接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸の交点$\mathrm{Q}$の$x$座標を$x_0$とする.$x_0$を$t$を用いて表せ.
(3)$t>1$のとき,曲線$C$と$x$軸および直線$x=t$とで囲まれる部分の面積を$S(t)$とする.$S(t)$を$t$を用いて表せ.
(4)$t>1$のとき,曲線$C$と$x$軸および接線$\ell$とで囲まれる部分の面積を$T(t)$とする.$T(t)$を$t$を用いて表せ.
(5)$1<t \leqq e^3$の範囲において,$f(t)=T(t)-S(t)$とおく.このとき,関数$f(t)$の増減を調べ,$f(t)$の最大値および最小値を求めよ.ただし,$2<e<3$であることは既知としてよい.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第3問
直線$\displaystyle \ell:y=\frac{1}{2}x-\frac{1}{4}$上の点Pから曲線$y=x^2$にひいた2接線の接点をQ,Rとし,$\theta=\angle \text{QPR}$とするとき,次の問いに答えよ.

(1)Pの$x$座標を$t$としPを$\ell$上動かす.$t \neq 0$のとき,$\tan \theta$を$t$の関数として表せ.
(2)$\theta$の最大値を求め,このときの点Pの座標を求めよ.
新潟大学 国立 新潟大学 2011年 第4問
関数
\[ f(t)=\left\{
\begin{array}{l}
t \qquad\qquad (0 \leqq t \leqq \pi) \\
2\pi-t \quad \, (\pi<t \leqq 2\pi)
\end{array}
\right. \]
に対して,次のように2つの関数$g(x),\ h(x)$を$0 \leqq x \leqq 2\pi$で定義する.
\[ g(x)=\int_0^{2\pi}f(t) \cos (t+x) \, dt,\quad h(x)=\int_0^{2\pi}f(t) \sin (t+x) \, dt \]
このとき,次の問いに答えよ.

(1)関数$g(x),\ h(x)$を求めよ.
(2)$x$が$0 \leqq x \leqq 2\pi$の範囲を動くとき,関数$y=g(x)+h(x)$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2011年 第15問
座標平面上の点$(x,\ y)$が
\[ \left\{
\begin{array}{l}
(x^2+y^2)^2-(3x^2-y^2)y=0 \\
x \geqq 0 \\
y \geqq 0
\end{array}
\right. \]
で定まる集合上を動くとき,$x^2+y^2$の最大値,およびその最大値を与える$x,\ y$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。