タグ「最大値」の検索結果

89ページ目:全1143問中881問~890問を表示)
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
釧路公立大学 公立 釧路公立大学 2012年 第1問
以下の各問に答えよ.

(1)次の式を因数分解せよ.$2(a+b+c)^2-2a^2-2b^2+2c^2$
(2)以下の問に答えよ.

(i) 関数$f(x)=|x^2-6x+5|$のグラフをかけ.
(ii) 区間$0 \leqq x \leqq t$における$f(x)=|x^2-6x+5|$の最大値と最小値,およびそのときの$x$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第1問
実数$p,\ q$に対して,$x$の$3$次関数$f_{p,q}(x)$を$f_{p,q}(x)=x^3+px+q$によって定める.実数$p,\ q$は,$3$次関数$f_{p,q}(x)$が以下の$3$条件を満たすような範囲を動くとする.

条件$(ⅰ)$:$f_{p,q}(1)=1$
条件$(ⅱ)$:$f^\prime_{p,q}(0)<0$(ただし,$f^\prime_{p,q}(x)$は$f_{p,q}(x)$の導関数を表す.)
条件$(ⅲ)$:$x \geqq 0$のとき,$f_{p,q}(x) \geqq 0$

このとき,定積分
\[ I(p,\ q)=\int_0^1 f_{p,q}(x) \, dx \]
を最大にするような$p,\ q$の値,および$I(p,\ q)$の最大値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第3問
関数$f(x)=mx \cos (mx)-\sin (mx)$について,以下の問いに答えよ.ただし,$m$は正の整数とする.

(1)$f(x)$が極値をとる最も小さい正の実数$x$を,$m$を用いて表せ.
(2)$m=2$のとき,区間$0 \leqq x \leqq 2\pi$における$f(x)$の最大値を求めよ.
(3)$m=3$のとき,曲線$y=f(x)$上の点$\displaystyle \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における曲線の接線が$y$軸と交わる点の座標$(x_0,\ y_0)$を求めよ.
(4)$\displaystyle \int_0^\pi f(x) \, dx=0$が成り立つために$m$が満たすべき条件を求めよ.
神戸大学 国立 神戸大学 2011年 第2問
以下の問に答えよ.

(1)$t$を正の実数とするとき,$|x|+|y|=t$の表す$xy$平面上の図形を図示せよ.
(2)$a$を$a \geqq 0$をみたす実数とする.$x,\ y$が連立不等式
\[ \left\{
\begin{array}{l}
ax+(2-a)y \geqq 2 \\
y \geqq 0
\end{array}
\right. \]
をみたすとき,$|x|+|y|$のとりうる値の最小値$m$を,$a$を用いた式で表せ.
(3)$a$が$a \geqq 0$の範囲を動くとき,(2)で求めた$m$の最大値を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
円$C_1:x^2+y^2=25$と円$C_2:(x-10)^2+(y-5)^2=50$の$2$つの交点と原点を通る円を$C_3$とする.次の問いに答えよ.

(1)円$C_3$の中心と半径を求めよ.
(2)点P$(x,\ y)$が円$C_3$上を動くとき,$2y-x$の最大値を求めよ.
(3)円$C_1$と円$C_2$の$2$つの交点を通る円の中心の軌跡を求めよ.
(4)円$C_1$と円$C_2$の$2$つの交点を通る円を$C$とする.点Q$(x,\ y)$が円$C$上を動くとき,$2y-x$の最大値が最小となる円$C$の中心と半径を求めよ.
秋田大学 国立 秋田大学 2011年 第1問
次の問いに答えよ.

(1)グラフが$3$点$(-2,\ 46),\ (3,\ -4),\ (5,\ 4)$を通る$2$次関数$y=f(x)$を求めよ.
(2)(1)の$2$次関数$y=f(x)$のグラフと直線$y=-2x+6$の$2$つの交点の座標を求めよ.
(3)(2)の$2$つの交点の$x$座標をそれぞれ$p,\ q$とする.ただし,$p<q$とする.$a$を定数とするとき,$2$次関数$y=-x^2+2ax+3-a^2$の$p \leqq x \leqq q$における最大値を求めよ.
東北大学 国立 東北大学 2011年 第2問
三角形OABの辺ABを$1:2$に内分する点をCとする.動点Dは$\overrightarrow{\mathrm{OD}} = x \overrightarrow{\mathrm{OA}} \ (x \geqq 1)$を満たすとし,直線CDと直線OBの交点をEとする.

(1)実数$y$を$\overrightarrow{\mathrm{OE}} = y \overrightarrow{\mathrm{OB}}$で定めるとき,次の等式が成り立つことを示せ.
\[ \frac{2}{x} + \frac{1}{y} = 3 \]
(2)三角形OABの面積を$S$,三角形ODEの面積を$T$とするとき,$\displaystyle \frac{S}{T}$の最大値と,そのときの$x$を求めよ.
神戸大学 国立 神戸大学 2011年 第1問
実数$x,\ y$に対して,等式
\[ x^2+y^2=x+y \cdots\cdots① \]
を考える.$t = x+y$とおく.以下の問に答えよ.

(1)$\maru{1}$の等式が表す$xy$平面上の図形を図示せよ.
(2)$x$と$y$が$①$の等式をみたすとき,$t$のとりうる値の範囲を求めよ.
(3)$x$と$y$が$①$の等式をみたすとする.
\[ F = x^3+y^3-x^2y-xy^2 \]
を$t$を用いた式で表せ.また,$F$のとりうる値の最大値と最小値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第2問
曲線$C:(x-2)^2+y^2=1$と直線$\ell: y=(\tan \theta)x$を考える.ただし$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とする.$f(\theta)$を次の(ア),(イ),(ウ)のように定める.

\mon[(ア)] $C$と$\ell$の共有点の個数が1のとき,$f(\theta)$は共有点と原点の距離とする.
\mon[(イ)] $C$と$\ell$の共有点の個数が2以上のとき,$f(\theta)$は共有点と原点の距離のうち最も小さいものとする.
\mon[(ウ)] $C$と$\ell$が共有点を持たないとき,$f(\theta)=0$とする.

さらに,$C$と$\ell$が共有点を持つ$\theta$の最大値を$\alpha$とする.次の問いに答えよ.

(1)$\alpha$を求めよ.
(2)$C$と$\ell$が共有点を持つとき,$f(\theta)$を求めよ.
(3)次の積分を計算せよ.
\[ \int_0^\alpha \{f(\theta)\}^2 \, d\theta \]
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。