タグ「最大値」の検索結果

87ページ目:全1143問中861問~870問を表示)
大同大学 私立 大同大学 2012年 第2問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)円$c_1:x^2+y^2-8x+6y-72=0$の中心を$\mathrm{A}(a,\ b)$,半径を$r$とするとき,$a=[ ]$,$b=-[ ]$,$r=\sqrt{[][]}$である.
円$c_2:x^2+y^2-2x+4y-35=0$の中心を$\mathrm{B}$とするとき,$\mathrm{AB}=\sqrt{[][]}$であり,円$c_1$が円$c_2$の接線から切りとる弦の長さの最大値は$[ ] \sqrt{[][]}$である.

(2)$\displaystyle 0<\beta<\alpha<\frac{\pi}{2}$,$\displaystyle \cos (\alpha+\beta)=\frac{1}{6}$,$\displaystyle \cos \alpha \cos \beta=\frac{3}{8}$のとき,

$\displaystyle \sin \alpha \sin \beta=\frac{[ ]}{[][]}$,$\displaystyle \cos (\alpha-\beta)=\frac{[ ]}{[][]}$,

$\displaystyle \cos 2\alpha=\frac{[ ]-[ ] \sqrt{[][][]}}{72}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$r$を$0<r<1$を満たす実数として,次のように行列とベクトルを定める.
\[ A=\left( \begin{array}{cc}
r & 0 \\
2r-1 & 1-r
\end{array} \right) ,\quad P=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad Q=\left( \begin{array}{c}
0 \\
1
\end{array} \right) \]
またベクトル$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を
\[ Q_1=\left( \begin{array}{c}
a_1 \\
b_1
\end{array} \right)=Q,\quad Q_n=AQ_{n-1}+P \quad (n \geqq 2) \]
として定める.

(1)$AP=\alpha P$,$AQ=\beta Q$を満たす定数$\alpha$,$\beta$を求めよ.
(2)$A^nP,\ A^nQ$を求めよ.
(3)$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)$を求めよ.
(4)座標平面において,各$n=1,\ 2,\ 3,\ \cdots$に対し座標が$(a_n,\ 0)$である点を$X_n$,座標が$(a_n,\ b_n-a_n)$である点を$Y_n$とする.さらに,台形$X_nX_{n+1}Y_{n+1}Y_n$の面積を$S_n (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ S=\sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+ \cdots \]
とする.

(i) $S$を求めよ.
(ii) $r$が$0<r<1$の範囲を動くとき,$S$の最大値とそのときの$r$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
座標平面上の点$\mathrm{P}(p,\ q)$が,媒介変数$\theta$により
\[ p=1+2 \cos \theta,\quad q=1+\sin \theta \quad (-\pi<\theta \leqq \pi) \]
で与えられている.$a$を非負の定数とするとき,点$\mathrm{P}$から,原点$\mathrm{O}$と点$(1,\ a)$を通る直線に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$の座標を$(u,\ v)$とする.点$\mathrm{P}$が$p \geqq 2$を満たす範囲にあるとき,以下の問いに答えよ.

(1)$\theta$と$q$の値の範囲を求めよ.
(2)$u$を$a$と$\theta$を用いて表せ.
(3)$N=\sqrt{u^2+(2+a^2)v^2}$とおく.$N$を$a$と$\theta$を用いて表せ.
(4)各$a$に対して,点$\mathrm{P}$が$p \geqq 2$を満たすように動くとき,$(3)$で求めた$N$の最大値を$M(a)$により表す.

(i) $M(0)$を求めよ.
(ii) $a>0$のとき,$M(a)$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$a,\ b,\ c$を整数とするとき,以下の問いに答えなさい.

(i) $a+b+c=10,\ a \geqq 1,\ b \geqq 1,\ c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[ア][イ]$である.
(ii) $a+b+c \leqq 10,\ a \geqq 1,\ b \geqq 1,\ c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[ウ][エ][オ]$である.
(iii) $a+b+c \leqq 10,\ 7 \geqq a \geqq 1,\ 7 \geqq b \geqq 1,\ 7 \geqq c \geqq 1$を満たす整数解$a,\ b,\ c$の組の総数は$[カ][キ][ク]$である.

(2)$\angle \mathrm{B}=2 \angle \mathrm{A}$を満たす$\triangle \mathrm{ABC}$について,以下の問いに答えなさい.

(i) 式$\displaystyle \frac{\sin B+\sin C}{\sin A}$がとりうる値の範囲は
\[ [ア]<\frac{\sin B+\sin C}{\sin A}<[イ] \]
である.
(ii) $\mathrm{AB}=2$,$\mathrm{AC}=3$のとき,
\[ \cos A=\frac{[ウ]+\sqrt{[エ][オ]}}{[カ]} \]
であり,
\[ \mathrm{BC}=-[キ]+\sqrt{[ク][ケ]} \]
である.

(3)座標平面上に,点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$および放物線$C:y=-x^2+mx+1$(ただし,$m$は実数の定数)がある.$2$点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$を通る直線を$\ell$とする.

(i) 放物線$C$と直線$\ell$が$2$個の異なる共有点をもつのは,
\[ m<-\frac{[ア]}{[イ]},\quad m>\frac{[ウ]}{[エ]} \]
のときである.
以下,放物線$C$と直線$\ell$が$2$個の異なる共有点をもつ場合について考え,この$2$個の共有点を$\mathrm{P}$,$\mathrm{Q}$とする.
(ii) 点$\mathrm{P}$と点$\mathrm{Q}$のすくなくとも一方が線分$\mathrm{AB}$(端点$\mathrm{A}$,$\mathrm{B}$を含む)上にあるのは
\[ m>\frac{[オ]}{[カ]} \]
のときである.
(iii) 点$\mathrm{P}$と点$\mathrm{Q}$がともに,線分$\mathrm{AB}$(端点$\mathrm{A}$,$\mathrm{B}$を含む)上にあるのは
\[ \frac{[キ]}{[ク]}<m \leqq \frac{[ケ][コ]}{[サ]} \]
のときである.また,$m$がこの範囲内で動くとき,線分$\mathrm{PQ}$の長さは,
$\displaystyle m=\frac{[シ][ス]}{[セ]}$で最大値$\displaystyle \frac{[ソ][タ]}{[チ]} \times \sqrt{[ツ]}$をとる.
安田女子大学 私立 安田女子大学 2012年 第2問
放物線$y=ax^2-6x+7$と直線$y=bx+c$が$2$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ d)$で交わっている.$a,\ b,\ c,\ d$を定数とするとき,次の問いに答えよ.

(1)$a,\ b,\ c,\ d$の値を求めよ.
(2)この放物線の頂点の座標を求めよ.
(3)点$\mathrm{P}$が$1 \leqq x \leqq 4$の区間において放物線上を動くとき,$\triangle \mathrm{APB}$の面積の最大値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の問の$[$50$]$~$[$63$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

関数$\displaystyle y=-4a \sin^2 \frac{\theta}{2}-3 \sin 2\theta-4 \cos 2\theta-6a \sin \theta+2a+10$がある.

(1)$3 \sin \theta-\cos \theta=t$とおくと,$y=t^2-[$50$]at+[$51$]$である.
(2)$a$の値の範囲が$-5<a<5$のとき,この関数の最大値$y_{\max}$のとりうる値の範囲は
\[ [$52$][$53$] \leqq y_{\max}<[$54$][$55$]+[$56$][$57$] \sqrt{[$58$][$59$]} \]
である.
(3)この関数の最小値が$-15$であるとき$\displaystyle a=\pm \frac{[$60$] \sqrt{[$61$][$62$]}}{[$63$]}$である.
東京女子大学 私立 東京女子大学 2012年 第7問
関数$f(x)=x^2e^{-x}$に対し,以下の設問に答えよ.ここで$e$は自然対数の底を表す.

(1)$x \geqq 0$における$f(x)$の最大値,およびそのときの$x$の値を求めよ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第1問
$xy=1000$,$x \geqq 10$,$\displaystyle y \geqq \frac{1}{10}$とする.

(1)$\log_{10}x$は,$x=\kakkofive{ア}{イ}{ウ}{エ}{オ}$のとき最大値$[カ]$をとる.
(2)$\log_{10}x \cdot \log_{10}y$は
\[ x=[キ][ク] \sqrt{[ケ][コ]},\quad y=[サ][シ] \sqrt{[ス][セ]} \]
のときに最大値$\displaystyle \frac{[ソ]}{[タ]}$をとり,
\[ x=\kakkofive{チ}{ツ}{テ}{ト}{ナ},\quad y=\frac{[ニ]}{[ヌ][ネ]} \]
のときに最小値$[ノ][ハ]$をとる.
大阪市立大学 公立 大阪市立大学 2012年 第2問
実数$\theta$に対し,座標空間の2点A$(\cos \theta,\ \sin \theta,\ 0)$,B$(0,\ \sin 2\theta,\ \cos 2\theta)$を考える.次の問いに答えよ.

(1)点A,Bと原点Oの3点は同一直線上にないことを示せ.
(2)三角形OABの面積$S$を$\sin \theta$を用いて表せ.
(3)$\theta$が実数全体を動くとき,(2)で求めた$S$の最大値と最小値を求めよ.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。