「最大値」について
タグ「最大値」の検索結果
(86ページ目:全1143問中851問~860問を表示) 私立 産業医科大学 2012年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.
(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
私立 京都女子大学 2012年 第1問
次の各問に答えよ.
(1)$A=2x^2-xy-3y^2+3x+8y-5$を因数分解せよ.また,$\displaystyle x=\frac{\sqrt{7}-2}{2},\ y=\frac{1}{\sqrt{7}-2}$のとき,$A$の値を求めよ.
(2)方程式$\displaystyle |-\abs{x|+4}=\frac{1}{2}x+1$の解を求めよ.
(3)$2$次関数$f(x)=ax^2+2ax+a+b$($a,\ b$は定数)が区間$-2 \leqq x \leqq 2$において最大値$4$,最小値$1$をとるように$a,\ b$の値を定めよ.
(1)$A=2x^2-xy-3y^2+3x+8y-5$を因数分解せよ.また,$\displaystyle x=\frac{\sqrt{7}-2}{2},\ y=\frac{1}{\sqrt{7}-2}$のとき,$A$の値を求めよ.
(2)方程式$\displaystyle |-\abs{x|+4}=\frac{1}{2}x+1$の解を求めよ.
(3)$2$次関数$f(x)=ax^2+2ax+a+b$($a,\ b$は定数)が区間$-2 \leqq x \leqq 2$において最大値$4$,最小値$1$をとるように$a,\ b$の値を定めよ.
私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.
(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
私立 大阪工業大学 2012年 第4問
関数$f(x)=x \sqrt{1-x} (0 \leqq x \leqq 1)$について,次の問いに答えよ.
(1)$f(x)$を微分せよ.
(2)$f(x)$の最大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
(1)$f(x)$を微分せよ.
(2)$f(x)$の最大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
私立 近畿大学 2012年 第1問
関数$f(x)$が,すべての実数$x$に対して$f(x)=2x^2-14x+\int_0^3 f(x) \, dx$をみたしているとき
(1)$\displaystyle \int_0^3 f(x) \, dx=[ア]$である.
(2)方程式$f(x)=0$の解$x_1,\ x_2 (x_1<x_2)$の値は,$x_1=[イ]$,$x_2=[ウ]$である.
(3)$a$を$a \geqq 0$をみたす実数とし,区間$a \leqq x \leqq a+1$における$f(x)$の最小値と最大値を,$a$の関数として,それぞれ,$m(a)$,$M(a)$とする.このとき$m(a)$が一定値となる$a$の区間は$[エ] \leqq a \leqq [オ]$であり,この区間で$m(a)=[カ]$である.また,$M(a) \leqq 6$をみたす$a$の区間は$[キ] \leqq a \leqq [ク]$である.
(1)$\displaystyle \int_0^3 f(x) \, dx=[ア]$である.
(2)方程式$f(x)=0$の解$x_1,\ x_2 (x_1<x_2)$の値は,$x_1=[イ]$,$x_2=[ウ]$である.
(3)$a$を$a \geqq 0$をみたす実数とし,区間$a \leqq x \leqq a+1$における$f(x)$の最小値と最大値を,$a$の関数として,それぞれ,$m(a)$,$M(a)$とする.このとき$m(a)$が一定値となる$a$の区間は$[エ] \leqq a \leqq [オ]$であり,この区間で$m(a)=[カ]$である.また,$M(a) \leqq 6$をみたす$a$の区間は$[キ] \leqq a \leqq [ク]$である.
私立 吉備国際大学 2012年 第3問
最大値が$7$で,そのグラフが$2$点$(0,\ 3)$,$(4,\ 3)$を通る$2$次関数がある.
(1)この関数の式を求めよ.
(2)この関数と$x$軸との交点の距離を求めよ.
(3)この関数のグラフを,$-3<x<6$の範囲でできるだけ詳しく図示しなさい.
(1)この関数の式を求めよ.
(2)この関数と$x$軸との交点の距離を求めよ.
(3)この関数のグラフを,$-3<x<6$の範囲でできるだけ詳しく図示しなさい.
私立 大阪歯科大学 2012年 第4問
次の問に答えよ.
(1)$xy$平面上の円$x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\mathrm{A}(-1,\ 0)$を考える.ただし,$-\pi<\theta<\pi$とする.直線$\mathrm{AP}$の傾きを$t$としたとき,$\cos \theta$と$\sin \theta$を$t$を用いて表せ.
(2)$-\pi<\theta \leqq \pi$とする.$\theta$の関数$\displaystyle f(\theta)=\frac{1+\cos \theta}{3 \cos \theta-2 \sin \theta+5}$の最大値と最小値,またそのときの$\theta$の値を求めよ.
(1)$xy$平面上の円$x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\mathrm{A}(-1,\ 0)$を考える.ただし,$-\pi<\theta<\pi$とする.直線$\mathrm{AP}$の傾きを$t$としたとき,$\cos \theta$と$\sin \theta$を$t$を用いて表せ.
(2)$-\pi<\theta \leqq \pi$とする.$\theta$の関数$\displaystyle f(\theta)=\frac{1+\cos \theta}{3 \cos \theta-2 \sin \theta+5}$の最大値と最小値,またそのときの$\theta$の値を求めよ.
私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.
$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.
\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群
\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$
\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$
\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$
\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$
\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$
\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$
\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$
\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$
エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.
\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群
\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$
\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$
\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$
\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$
\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$
\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$
\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$
\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$
エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
私立 久留米大学 2012年 第6問
$f(x)=a(x^2-6x+10)^2-x^2+6x-5+a$とする.$a=0$のとき,$f(x)$の最大値は$[$14$]$となる.また,$f(x)$が正の最大値をもつ$a$の条件は$[$15$]$であり,$x=[$16$]$のとき最大値をとる.
私立 北海道科学大学 2012年 第11問
$x$の$2$次関数$y=ax^2+4ax+b (a>0)$について次の各問に答えよ.
(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.
(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.