タグ「最大値」の検索結果

85ページ目:全1143問中841問~850問を表示)
広島国際学院大学 私立 広島国際学院大学 2012年 第2問
定義域$-2 \leqq x \leqq 3$において$2$次関数$f(x)=x^2+ax+3$を考える.$a$は定数である.

(1)$f(3)-f(-2)=-5$であるとき,$a$の値を求めなさい.
(2)$a$が$(1)$で求めた値をとるとき,定義域における$f(x)$の最大値と最小値,またそのときの$x$の値を求めなさい.
津田塾大学 私立 津田塾大学 2012年 第1問
次の問に答えよ.

(1)数列
\[ 1,\ 101,\ 10101,\ 1010101,\ \cdots \]
の第$n$項を$a_n$とする.$a_{n+1}$を$a_n$を用いて表せ.また,$n$が$3$の倍数のとき,$a_n$は$7$の倍数であることを示せ.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$2 \cos \theta+\sin \theta$の最大値および最小値を求めよ.
津田塾大学 私立 津田塾大学 2012年 第3問
放物線$y=x^2$を$C$とおき,$C$上の点$\mathrm{A}(a,\ a^2)$(ただし$a>0$)と点$\mathrm{B}(0,\ 1)$を通る直線を$\ell$とする.$C$と$\ell$で囲まれた領域の$x \geqq 0$の部分の面積を$f(a)$とし,$C$と$x$軸と直線$x=a$で囲まれた領域の面積を$g(a)$とする.$f(a)-g(a)$の最大値を求めよ.
昭和大学 私立 昭和大学 2012年 第1問
以下の各問に答えよ.

(1)$|x-1| \leqq 2x+1$を満たす実数$x$の範囲を求めよ.
(2)$2$次関数$y=2x^2-8x+4 (1 \leqq x \leqq 4)$の最大値と,そのときの$x$の値を求めよ.
(3)$3$辺の長さがそれぞれ$3,\ 5,\ 7$の三角形の面積を求めよ.
(4)$\displaystyle \frac{5}{7}$を小数で表したとき,小数第$1000$位の数字を求めよ.
昭和大学 私立 昭和大学 2012年 第1問
以下の各問に答えよ.

(1)$|x-1| \leqq 2x+1$を満たす実数$x$の範囲を求めよ.
(2)$2$次関数$y=2x^2-8x+4 (1 \leqq x \leqq 4)$の最大値と,そのときの$x$の値を求めよ.
(3)$3$辺の長さがそれぞれ$3,\ 5,\ 7$の三角形の面積を求めよ.
(4)$\displaystyle \frac{5}{7}$を小数で表したとき,小数第$1000$位の数字を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
昭和大学 私立 昭和大学 2012年 第3問
次の各問に答えよ.

(1)正の数$a,\ b$が$a^3+b^3=5$を満たすとき,$a+b$のとりうる値の範囲を求めよ.
(2)$x>0,\ x \neq 1$のとき,$\displaystyle 1+\frac{1}{\log_2x}-\frac{3}{\log_3x}<0$を満たす$x$の範囲を求めよ.
(3)点$\mathrm{P}$が楕円$x^2+5(y-1)^2=5$上を動くとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分の長さの最大値を求めよ.
(4)$A=\left( \begin{array}{cc}
3 & -5 \\
2 & -3
\end{array} \right),\ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.$(I+A)^{2012}=mI+nA$となる実数$m,\ n$の値を求めよ.
法政大学 私立 法政大学 2012年 第4問
$0 \leqq \theta<2\pi$とする.

(1)$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$の値の範囲を求めよ.
(2)$(1)$で求めた範囲の$\theta$について,$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
(3)$k$は実数の定数とする.$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta=k$かつ$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$が,ちょうど$3$個存在するような,$k$の値の範囲を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第4問
次は,下図で示されたような原子力発電所等でみられる冷却塔のモデルである.
\[ f(x)=\frac{x-3}{2}+\frac{2}{x-5},\quad 0 \leqq x \leqq \frac{7}{2} \]
とするとき$y=f(x)$のグラフを$x$軸のまわりに$1$回転させてできる図形を考える.
(図は省略)

(1)$f(x)$は$x=[$13$]$において最大値$[$14$]$をとり,$x=[$15$]$において最小値$[$16$]$をとる.
(2)この図形の内部の体積は$[$17$]$である.
神戸薬科大学 私立 神戸薬科大学 2012年 第4問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)関数$\displaystyle f(x)=\cos^4 x-\sin^4 x+\frac{1}{2} \sin x \sin 2x+3 \cos x (0 \leqq x \leqq \pi)$とする.$t=\cos x$とおき$f(x)$を$t$の式で表すと,$f(x)=[ ]$である.$f(x)$は$\cos x=[ ]$のとき最大値$[ ]$をとり,$\cos x=[ ]$のとき最小値$[ ]$をとる.
(2)半円$C_1:x^2+y^2=2 (y \geqq 0)$と放物線$C_2:y=ax^2+1-a (a<-1)$とで囲まれた図形の面積$S$を求めたい.

(i) $C_1$と$C_2$の交点を求めると$[ ]$である.
(ii) $C_1$と$C_2$のグラフおよび$(1)$で求めた交点を図示せよ.
(iii) 面積$S=[ ]$である.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。