タグ「最大値」の検索結果

84ページ目:全1143問中831問~840問を表示)
酪農学園大学 私立 酪農学園大学 2012年 第1問
次の各問いに答えよ.

(1)$(xy+1)(x+1)(y+1)+xy$を因数分解せよ.
(2)$\displaystyle \sin \theta+\cos \theta=\frac{3}{5} (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\sin \theta \cos \theta$の値を求めよ.

(3)$\displaystyle \frac{2 \sqrt{7}}{\sqrt{5}+1}-\frac{\sqrt{5}}{\sqrt{7}+\sqrt{5}}$の分母を有理化して簡単にせよ.

(4)$8$個の異なる荷物を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に分けるとき,$\mathrm{A}$に$3$個,$\mathrm{B}$に$2$個,$\mathrm{C}$に$3$個のように分ける方法は何通りあるか.
(5)方程式$x^2+(2a+1)x+a+1=0$が実数解をもつように,定数$a$の値の範囲を求めよ.
(6)$2$次関数$y=x^2-2mx+3m$の最小値を$k$とするとき,$k$の最大値とそのときの$m$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第2問
変数$\theta$の関数$f(\theta)=5 \sin^2 \theta+m \cos \theta-3$について,以下の問に答えよ.ただし,$m$は定数とする.

(1)$\cos \theta=t$とおいて,関数$f(\theta)$を$t$の関数として表したものを$g(t)$とおくとき,$g(t)$を求めよ.
(2)関数$g(t)$において定数$m$を$1$とする.

(i) 変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,関数$g(t)$の最大値と最小値を求めよ.
(ii) 変数$\theta$が$90^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,方程式$g(t)=0$を解け.

(3)変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,関数$g(t)$の最大値を$m$を用いて表せ.
(4)変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,方程式$f(\theta)=0$が異なる$2$個の解を持つための$m$の値の範囲を求めよ.
岡山理科大学 私立 岡山理科大学 2012年 第2問
関数$\displaystyle y=\left( \log_3 \frac{x^3}{3} \right) \left( \log_3 \frac{9}{x^3} \right)$について,次の設問に答えよ.

(1)$t=\log_3x$とおいて,$y$を$t$の式で表せ.
(2)区間$1 \leqq x \leqq 9$における$y$の最大値と最小値を求めよ.
青山学院大学 私立 青山学院大学 2012年 第3問
連立不等式
\[ \left\{ \begin{array}{l}
x^2-2x+y^2 \leqq 24 \\
x+2y \geqq 3
\end{array} \right. \]
の表す領域を図示し,点$(x,\ y)$がこの領域を動くとき,$4x+3y$の最大値と最小値を求めよ.
中部大学 私立 中部大学 2012年 第3問
$a,\ b$は定数で,$a>1$とする.関数$f(x)=x^3-3ax^2+b$について,次の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)区間$0 \leqq x \leqq 3$における$f(x)$の最大値が$3$,最小値が$\displaystyle -\frac{21}{2}$であるとき,$a,\ b$を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第4問
次の問いに答えよ.

(1)加法定理$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$(複号同順)を用いて,
\[ \sin x \sin y=\frac{1}{2} (\cos (x-y)-\cos (x+y)) \]
を証明しなさい.
(2)$x+y=\pi$,$\displaystyle \frac{\pi}{4} \leqq x \leqq \frac{2}{3} \pi$のとき,$\sin x \sin y$の最大値,最小値とそのときの$x$の値を求めなさい.
日本福祉大学 私立 日本福祉大学 2012年 第3問
$a$を正の定数とするとき,$0 \leqq x \leqq a$における$f(x)=x^3-12x+4$の最大値,最小値を求めよ.
広島工業大学 私立 広島工業大学 2012年 第6問
$\mathrm{O}$を原点とする座標平面上に$3$点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$がある.直線$y=a$と線分$\mathrm{AB}$,$\mathrm{AC}$の交点を$\mathrm{P}$,$\mathrm{Q}$とする.ただし,$0<a<2$とする.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\triangle \mathrm{OPQ}$の面積を$a$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$の面積の最大値とそのときの$a$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。