タグ「最大値」の検索結果

79ページ目:全1143問中781問~790問を表示)
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
上智大学 私立 上智大学 2012年 第2問
$a,\ b$を実数とし,$C_1,\ C_2$をそれぞれ次の$2$次関数のグラフとする.
\[ C_1: y=x^2, \quad C_2: y=-(x-a)^2+2a+b \]

(1)$C_1$と$C_2$が共有点をもつための条件を$a$と$b$で表すと
\[ a^2+[タ]a+[チ]b \leqq 0 \]
となる.特に$b$のとりうる値の範囲は$b \geqq [ツ]$であり,$b=[ツ]$のとき$C_1$と$C_2$はただ$1$つの共有点$\left( [テ],\ [ト] \right)$をもつ.
(2)$b=6$とし,$C_1$と$C_2$は共有点をもつとすると,
\[ [ナ] \leqq a \leqq [ニ] \]
である.このとき,$C_1$と$C_2$で囲まれた図形を$D$とすると,$D$の面積$S$は
\[ S=\frac{1}{3} \left( [ヌ]a^2+[ネ]a+[ノ] \right)^{\frac{3}{2}} \]
と表される.$a=[ハ]$のとき$S$は最大値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.
(3)$a=[ハ]$,$b=6$とし,$C_1$と$C_2$で囲まれた図形を$D_0$とする.点$\mathrm{P}(x,\ y)$が$D_0$内を動くとき,$x+2y$の最大値は$\displaystyle \frac{[ヘ]}{[ホ]}$,最小値は$\displaystyle \frac{[マ]}{[ミ]}$である.
上智大学 私立 上智大学 2012年 第2問
$a$を実数とする.座標平面において,放物線$C_a$
\[ C_a:y=-2x^2+4ax-2a^2+a+1 \]
および放物線$C$
\[ C:y=x^2-2x \]
を考える.

(1)$C_a$の頂点は常に直線$y=[ク]x+[ケ]$上にある.
(2)$C_a$と$C$が共有点をもつための必要十分条件は,
\[ \frac{[コ]}{[サ]} \leqq a \leqq [シ] \]
である.
(3)$\displaystyle a=\frac{[コ]}{[サ]}$のとき,$C_a$と$C$の共有点は$\mathrm{P}([ス],\ [セ])$である.

(4)$a=[シ]$のとき,$C_a$と$C$の共有点は$\mathrm{Q}([ソ],\ [タ])$である.

(5)$C$と直線$\mathrm{PQ}$で囲まれる図形の面積は$\displaystyle \frac{[チ]}{[ツ]}$である.
(6)$\displaystyle \frac{[コ]}{[サ]}<a<[シ]$の場合,$C_a$と$C$で囲まれる図形の面積は,$\displaystyle a=\frac{[テ]}{[ト]}$のとき最大値$\displaystyle \frac{[ナ]}{[ニ]} \sqrt{[ヌ]}$をとる.
上智大学 私立 上智大学 2012年 第1問
$x$の$3$次式$f(x)=ax^3+bx^2+cx+d$は,$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において
\[ f(\cos \theta) = \cos 3\theta - \sqrt{3} \cos 2\theta \]
を常に満たすとする.

(1)$a=[ア],\ b=[イ]\sqrt{[ウ]},\ c=[エ],\ d=\sqrt{[オ]}$である.
(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,$\cos 3\theta - \sqrt{3}\cos 2\theta$は
\[ \theta = \frac{[カ]}{[キ]}\pi \text{のとき最小値} \frac{[ク]}{[ケ]}\sqrt{[コ]} \text{をとり,} \]
\[ \theta = \frac{[サ]}{[シ]}\pi \text{のとき最大値} \sqrt{[ス]} \text{をとる.} \]
(3)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \geqq \alpha\cos \theta + \sqrt{3} \]
が常に成り立つような$\alpha$の最大値は$\displaystyle\frac{[セ]}{[ソ]}$である.
(4)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \leqq \beta\cos \theta + \sqrt{3} \]
が常に成り立つような$\beta$の最小値は$[タ]+[チ]\sqrt{[ツ]}$である.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)関数$f(x)$を
\[ f(x) = \log_4 32x - \log_8 64x + \log_{16} 8x\]
とする.$5 \leqq f(x) \leqq 10$となるためにの必要十分条件は
\[ 2^a \leqq x \leqq 2^b,\quad a=[ア],\ b=[イ] \]
である.
(2)関数$g(x)$を
\[ g(x) = 4\cos^2 \frac{x}{2} +2\sin^2\frac{x}{2} +\sqrt{3}\sin x \]
とする.$0 \leqq x < 2\pi$とすると,$\displaystyle x=\frac{[ウ]}{[エ]}\pi$のとき$g(x)$は最大値をとる.
(3)$m$と$n$を$m \geqq n$を満たす正の整数とする.3辺の長さがそれぞれ$m+1,\ m,\ n$であり,それらの和が100以下であるような直角三角形は,全部で[オ]個ある.また,そのうち面積が最も大きいものの斜辺の長さは[カ]である.
法政大学 私立 法政大学 2012年 第1問
連立不等式
\[ x+2y \leqq 2a^2+a+3,\quad x \geqq a+1,\quad y \geqq a^2 \]
の表す領域を$D$とおく.ただし,$a$は実数の定数とする.また,点$(x,\ y)$が$D$上を動くときの,$x+y$の最小値を$m$,最大値を$M$とおく.

(1)$a=1$のとき,$D$を図示せよ.さらに,そのときの$m$と$M$の値を求めよ.
(2)$\displaystyle m=\frac{3}{2}$となるような$a$の値を求めよ.
(3)$M$の値が最小となるような$a$の値と,そのときの$M$の値を求めよ.
青森中央学院大学 私立 青森中央学院大学 2012年 第9問
関数$y=2\cos \theta - \sin^2 \theta (0 \leqq \theta \leqq 2\pi)$の最大値を$M$,最小値を$m$とする.$M+m$の値を求めよ.
青森中央学院大学 私立 青森中央学院大学 2012年 第10問
$x,\ y$が3つの不等式$:\ 2x+y \geqq 0, x+2y \leqq 6, 4x-y \leqq 6$を満たすとき,$y-x$の最大値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第9問
関数$y=2 \cos \theta-\sin^2 \theta (0 \leqq \theta<2\pi)$の最大値を$M$,最小値を$m$とする.$(M+m)$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。