タグ「最大値」の検索結果

70ページ目:全1143問中691問~700問を表示)
北九州市立大学 公立 北九州市立大学 2013年 第1問
以下の問いの空欄$[ア]$~$[コ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$\sqrt{6+4 \sqrt{2}}$の小数部分を$a$とすると,$a=[ア]$,$\displaystyle a^2-\frac{1}{a^2}=[イ]$となる.
(2)$2$次関数$y=3x^2-6x+a+6 (0 \leqq x \leqq 3)$の最小値が$5$となるような定数$a$の値は$[ウ]$である.また,このとき最大値は$[エ]$である.
(3)$0,\ 1,\ 2,\ 3,\ 4,\ 5$の$6$個の数字から異なる$3$個の数字を取り出して並べ,$3$桁の整数を作るとき,整数は全部で$[オ]$個,偶数は全部で$[カ]$個となる.
(4)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=5$,$\mathrm{BC}=\mathrm{CD}=7$,$\mathrm{DA}=3$とする.$\angle \mathrm{BAD}=\theta$とするとき,$\cos \theta$は$[キ]$,四角形$\mathrm{ABCD}$の面積は$[ク]$である.
(5)赤いカード$4$枚,青いカード$3$枚,合計$7$枚のカードがある.この中から$2$枚のカードを同時に取り出すとき,$2$枚とも赤いカードとなる確率は$[ケ]$である.また,赤いカードを$1$点,青いカードを$5$点とするとき,取り出した$2$枚のカードの合計点の期待値は$[コ]$である.
京都府立大学 公立 京都府立大学 2013年 第2問
定数$a$を実数とし,$0 \leqq x<2\pi$とする.関数$f(x)=1-2a-2a \cos x-2 \sin^2 x$の最小値が$\displaystyle \frac{1}{2}$のとき,$a$の値とそのときの$f(x)$の最大値を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第3問
関数$f(x)$に対して,
\[ \int_0^x f(t) \, dt=-x^3+ax^2+bx+c \]
とする.$a,\ b,\ c$は定数である.以下の問に答えなさい.

(1)$f(x)$は,$x=p$で最大値$q$をとる.$p,\ q$を$a,\ b$を用いて表しなさい.

(2)$\displaystyle F(x)=\int_0^x f(t) \, dt$とおき,$F(3)=0$,$f(2)=0$とする.$F(0)=0$となることに注意して,$a,\ b,\ c$の値を求めなさい.
(3)$(2)$の条件の下で,方程式$f(x)=0$のもう$1$つの解を求めなさい.
尾道市立大学 公立 尾道市立大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次不等式$2x^2-3x-2 \geqq 0$を解きなさい.
(2)実数$x,\ y$が$2x^2+y^2-3x=2$を満たすとき,$x$と$y$の取りうる値の範囲を求めなさい.
(3)$2x^2+y^2-3x=2$のとき,$2y^2+6 |x|+3$の最大値および最小値を求めなさい.
東京大学 国立 東京大学 2012年 第1問
次の連立不等式で定まる座標平面上の領域$D$を考える.
\[ x^2+ (y-1)^2 \leqq 1, \quad x \geqq \frac{\sqrt{2}}{3} \]
直線$\ell$は原点を通り,$D$との共通部分が線分となるものとする.その線分の長さ$L$の最大値を求めよ.また,$L$が最大値をとるとき,$x$軸と$\ell$のなす角$\theta\ (0<\theta<\displaystyle\frac{\pi}{2})$の余弦$\cos \theta$を求めよ.
北海道大学 国立 北海道大学 2012年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$で定義された関数
\[ f(\theta) = 4\cos 2\theta\, \sin \theta \ +\ 3\!\sqrt{2}\, \cos 2\theta \ -\ 4\sin \theta \]
を考える.

(1)$x=\sin \theta$とおく.$f(\theta)$を$x$で表せ.
(2)$f(\theta)$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
名古屋大学 国立 名古屋大学 2012年 第3問
$n$を2以上の整数とする.1から$n$までの整数が1つずつ書かれている$n$枚のカードがある.ただし,異なるカードには異なる整数が書かれているものとする.この$n$枚のカードから,1枚のカードを無作為に取り出して,書かれた整数を調べてからもとに戻す.この試行を3回繰り返し,取り出したカードに書かれた整数の最小値を$X$,最大値を$Y$とする.次の問に答えよ.ただし,$j$と$k$は正の整数で,$j+k\leqq n$を満たすとする.また,$s$は$n-1$以下の正の整数とする.

(1)$X \geqq j$かつ$Y \leqq j+k$となる確率を求めよ.
(2)$X=j$かつ$Y=j+k$となる確率を求めよ.
(3)$Y-X=s$となる確率を$P(s)$とする.$P(s)$を求めよ.
(4)$n$が偶数のとき,$P(s)$を最大にする$s$を求めよ.
東京大学 国立 東京大学 2012年 第6問
$2\times2$行列$P=\biggl( \begin{array}{cc}
p & q \\
r & s
\end{array} \biggr)$に対して
\[ \mathrm{Tr}(P)=p+s \]
と定める.\\
\quad $a$,$b$,$c$は$a\geqq b>0$,$0\leqq c\leqq1$を満たす実数とする.行列$A$,$B$,$C$,$D$を次で定める.
\[ A=\biggl( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \biggr),\ B= \biggl( \begin{array}{cc}
b & 0 \\
0 & a
\end{array} \biggr),\ C= \biggl( \begin{array}{cc}
a^c & 0 \\
0 & b^c
\end{array} \biggr),\ D= \biggl( \begin{array}{cc}
b^{1-c} & 0 \\
0 & a^{1-c}
\end{array} \biggr) \]
また実数$x$に対し$U(x)= \biggl( \begin{array}{cc}
\cos x & -\sin x \\
\sin x & \cos x
\end{array} \biggr)$とする.このとき以下の問いに答えよ.

(1)各実数$t$に対して,$x$の関数
\[ f(x)=\mathrm{Tr}\Biggl(\Bigl(U(t)AU(-t)-B \Bigr)U(x) \biggl( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \biggr)U(-x)\Biggr) \]
の最大値$m(t)$を求めよ.(ただし,最大値をとる$x$を求める必要はない.)
(2)すべての実数$t$に対し
\[ 2\mathrm{Tr}(U(t)CU(-t)D)\geqq \mathrm{Tr}(U(t)AU(-t)+B)-m(t) \]
が成り立つことを示せ.
岡山大学 国立 岡山大学 2012年 第4問
$0 \leqq a \leqq 1$に対して
\[ f(a) = \int_0^1 \left| (x-a)(x-3+a) \right| \, dx \]
と定める.$f(a)$の最大値と最小値を求めよ.
東北大学 国立 東北大学 2012年 第2問
関数$f(x)$を
\[ f(x) = \left| \,2\, \cos^2 x -2\sqrt{3} \, \sin x \, \cos x - \sin x + \sqrt{3}\, \cos x - \frac{5}{4} \, \right| \]
と定める.以下の問いに答えよ.

(1)$t=-\sin x + \sqrt{3} \cos x$とおく.$f(x)$を$t$の関数として表せ.
(2)$x$が$0 \leqq x \leqq 90^\circ$の範囲を動くとき,$t$のとりうる値の範囲を求めよ.
(3)$x$が$0 \leqq x \leqq 90^\circ$の範囲を動くとき,$f(x)$のとりうる値の範囲を求めよ.また,$f(x)$が最大値をとる$x$は,$60^\circ < x< 75^\circ$を満たすことを示せ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。