タグ「最大値」の検索結果

68ページ目:全1143問中671問~680問を表示)
早稲田大学 私立 早稲田大学 2013年 第2問
あるスポーツの試合において,$\mathrm{A}$,$\mathrm{B}$の$2$チームが対戦し,先に$3$回勝った方が優勝とする.$1$回の試合で$\mathrm{A}$が勝つ確率を$p$,$\mathrm{B}$が勝つ確率を$1-p$とする.

(1)$\displaystyle p=\frac{1}{3}$のときに,ちょうど$4$試合目で優勝チームが決まる確率は$\displaystyle \frac{[カ]}{[キ]}$である.

(2)ちょうど$N$試合目で優勝チームが決まるとする.このとき,$0 \leqq p \leqq 1$の範囲で$N$の期待値の最大値は$\displaystyle \frac{[ク]}{[ケ]}$である.
早稲田大学 私立 早稲田大学 2013年 第3問
$\displaystyle f(x)=\frac{1}{2}e^{2x}+2e^x+x$とする.次の問に答えよ.

(1)実数$t$に対して$g(x)=tx-f(x)$とおく.$x$が実数全体を動くとき,$g(x)$が最大値をもつような$t$の範囲を求めよ.また$t$がその範囲にあるとき,$g(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた最大値を$m(t)$とする.$a$を定数とし,$t$の関数$h(t)=at-m(t)$を考える.$t$が$(1)$で求めた範囲を動くとき,$h(t)$の最大値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第4問
直線$x+y=1$に接する楕円
\[ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>0,\ b>0) \]
を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.

$\displaystyle a^2=\frac{[ヌ]}{[ニ]},\ b^2=\frac{[ネ]}{[ニ]}$のとき,$V$は最大値$\displaystyle \frac{[ハ] \sqrt{3} \pi}{[ノ]}$をとる.
早稲田大学 私立 早稲田大学 2013年 第5問
平面上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$に対して,点$\mathrm{Q}(x,\ y)$を以下のように定める.
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{cc}
0 & 2 \\
\sqrt{3} & -1
\end{array} \right) \left( \begin{array}{c}
\cos \theta \\
\sin \theta
\end{array} \right) \]
$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,次の問に答えよ.

(1)すべての点$\mathrm{Q}(x,\ y)$に対して,$ax^2+bxy+y^2$の値が$\theta$によらず一定であるとき,定数$a,\ b$の値は$a=[ヒ]$,$b=[フ]$である.
(2)原点$\mathrm{O}$と点$\mathrm{Q}$の距離の$2$乗の最小値は$[ヘ]$,最大値は$[ホ]$である.
早稲田大学 私立 早稲田大学 2013年 第5問
空間内に平面$P$がある.空間内の図形$A$に対し,$A$の各点から$P$に下ろした垂線と$P$との交点の全体を,$A$の$P$への正射影とよぶ.次の問に答えよ.

(1)平面$Q$が平面$P$と角$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$で交わっているとする.すなわち,$P$と$Q$の交線に垂直な平面で$P,\ Q$を切ってできる$2$直線のなす角が$\theta$であるとする.$Q$上の長さ$1$の線分の$P$への正射影の長さの最大値と最小値を求めよ.
(2)$(1)$の$Q$を考える.$Q$上の$1$辺の長さが$1$である正三角形の$P$への正射影の面積を求めよ.
(3)$1$辺の長さが$1$である正四面体$T$の$P$への正射影$T^\prime$はどんな形か.また,$T^\prime$の面積の最大値を求めよ.
中京大学 私立 中京大学 2013年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c$が$3$点$(-3,\ -15)$,$(0,\ -24)$,$(3,\ 21)$を通るとき,
\[ a=[ア],\quad b=[イ],\quad c=-[ウ][エ] \]
であり,この放物線と$x$軸との交点は$(-[オ],\ 0)$,$([カ],\ 0)$である.
(2)点$\mathrm{O}$を$\triangle \mathrm{ABC}$の内心とする.$\angle \mathrm{BAC}={60}^\circ$,$\angle \mathrm{ABO}={35}^\circ$のとき,
\[ \angle \mathrm{ACO}={[キ][ク]}^\circ,\quad \angle \mathrm{BOC}={[ケ][コ][サ]}^\circ \]
である.
(3)関数$\displaystyle y=\frac{1}{3} {\left( \frac{1}{8} \right)}^x-2 {\left( \frac{1}{4} \right)}^x+3 {\left( \frac{1}{2} \right)}^x+1 (x>-2)$は


$x=[シ]$で最大値$\displaystyle \frac{[ス]}{[セ]}$


をとり,

$x=-\log_2 [ソ]$で最小値$[タ]$

をとる.
(4)条件$a_1=0$,$\displaystyle a_n=a_{n-1}+\frac{n-1}{2013} (n=2,\ 3,\ 4,\ \cdots)$によって定められる数列$\{a_n\}$において,$a_n \geqq 1$を満たす最小の$n$は$[チ][ツ]$であり,
\[ a_{[チ][ツ]}=\frac{[テ][ト][ナ]}{[ニ][ヌ][ネ]} \]
である.
東京医科大学 私立 東京医科大学 2013年 第3問
座標平面上の楕円$\displaystyle C:\frac{(x-a)^2}{b}+\frac{(y-c)^2}{2}=1$($a,\ b,\ c$は正の定数)は$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 2)$を通るとする.

(1)定数$a,\ b,\ c$は$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)点$\mathrm{P}$が楕円$C$上を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}$の最大値を$M$とすれば$\displaystyle M=\frac{[エオ]}{[カ]}$である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2013年 第4問
実数$x,\ y$が条件:$x^2+2xy+9y^2=6$を満たすとき,次の問に答えよ.

(1)$x+3y$のとり得る値の範囲を求めよ.
(2)$z=(x-3y)^2+2(x+3y)$の最大値と最小値を求めよ.
千歳科学技術大学 私立 千歳科学技術大学 2013年 第4問
関数$y=4 \cos^3 x+3 \sin^2 x-6 \cos x (0 \leqq x \leqq 2\pi)$について以下の問いに答えなさい.

(1)$\cos x=t$とおくとき,$y=4 \cos^3 x+3 \sin^2 x-6 \cos x$を$t$の関数として表しなさい.
(2)$t$の取り得る範囲を求めなさい.
(3)$y=4 \cos^3 x+3 \sin^2 x-6 \cos x$の最大値と最小値を求めなさい.またそのときの$x$の値も求めなさい.
岡山県立大学 公立 岡山県立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \sum_{k=1}^{2013} \frac{1}{\sum_{j=1}^k j}$を求めよ.
(2)実数$a,\ b$を係数とする$2$次方程式$x^2+ax+b=0$が異なる$2$つの虚数解をもつ.$1$つの虚数解を$\alpha$とすると,他の解は$2 \alpha-4+3i$と表すことができる.このとき,$a,\ b$の値を求めよ.ただし,$i$は虚数単位である.
(3)座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=\cos 2t,\quad y=\sin t \]
で表されるとき,点$\mathrm{P}$の速さは
\[ v=\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \]
である.次の問いに答えよ.

(i) $v^2$を$\cos t$で表せ.
(ii) $v$の最大値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。