タグ「最大値」の検索結果

67ページ目:全1143問中661問~670問を表示)
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
九州産業大学 私立 九州産業大学 2013年 第3問
関数$f(x)=|x^2-2x-3|$と,曲線$C:y=f(x)$,直線$\ell:y=x+1$について考える.

(1)曲線$C$と$x$軸との交点の$x$座標は,小さい順に$[アイ]$,$[ウ]$である.
(2)関数$f(x)$の$-2 \leqq x \leqq 2$における最大値は$[エ]$であり,最小値は$[オ]$である.
(3)曲線$C$と$x$軸により囲まれた部分の面積は$\displaystyle \frac{[カキ]}{[ク]}$である.

(4)曲線$C$と直線$\ell$との交点の$x$座標は,小さい順に$[ケコ]$,$[サ]$,$[シ]$である.

(5)曲線$C$と直線$\ell$により囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[スセ]}{[ソ]}$である.
桜美林大学 私立 桜美林大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての不等式$\displaystyle \frac{2x-a}{3}<\frac{x-3}{2}$をみたす最大の整数が$3$となるような実数の定数$a$がとり得る値の範囲を次の$①$~$⑤$から選ぶと$[ア]$である.
\[ ① 6<a \quad ② 6 \leqq a \quad ③ 6<a<\frac{13}{2} \quad ④ 6 \leqq a<\frac{13}{2} \quad ⑤ 6<a \leqq \frac{13}{2} \]
(2)$1000$以下の自然数で,$3$または$5$で割りきれる数は$[イ][ウ][エ]$個であり,そのうち偶数でないものは$[オ][カ][キ]$個ある.
(3)$2$つの方程式$x^2-2ax+2a^2+a-2=0$と$x^2+(2a+2)x-a+1=0$がともに実数解をもつような定数$a$の値の範囲は$[ク] \leqq a \leqq [ケ]$である.
(4)$0 \leqq x \leqq \pi$とする.関数$y=4 \sin x+3 \cos x$の最小値は$[コ]$であり,$y$の最大値を与える$x$の値を$\theta$とすると,$\displaystyle \sin 2\theta=\frac{[サ][シ]}{[ス][セ]}$である.
(5)$x$の関数$f(x)$が$\displaystyle f(x)=\int_0^1 xtf(t) \, dt+2$を満たすとき,$\displaystyle f(x)=\frac{[ソ]}{[タ]}x+[チ]$である.
桜美林大学 私立 桜美林大学 2013年 第4問
$0$,$1$,$2$,$3$,$4$の数字が$1$つずつ書かれたカードが$2$枚ずつ合計$10$枚ある.この中から同時に$3$枚のカードを取り出すとき,以下の問に答えなさい.

(1)取り出したカードを並べて$3$桁の自然数をつくるとき,$213$以下となるものは$[ル][レ]$個ある.

(2)取り出したカードの中に$0$のカードが含まれている確率は$\displaystyle \frac{[ロ]}{[ワ][ヲ]}$である.

(3)取り出したカードの数字がいずれも$3$以下である確率は$\displaystyle \frac{[ガ]}{[ギ][グ]}$である.

(4)取り出したカードの数字の最大値が$3$である確率は$\displaystyle \frac{[ゲ]}{[ゴ][ザ]}$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
広島工業大学 私立 広島工業大学 2013年 第3問
$a,\ b$を定数とする.$3$次関数$f(x)=ax^2(x-3)+b$の区間$0 \leqq x \leqq 3$における最大値が$1$で最小値が$-1$のとき,$a,\ b$の値を求めよ.
広島工業大学 私立 広島工業大学 2013年 第8問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=6$,$\mathrm{BC}=4$,$\mathrm{CA}=5$とする.$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{P}$が,頂点$\mathrm{C}$を含まない弧$\mathrm{AB}$上にある.次の問いに答えよ.

(1)$\cos C$の値を求めよ.
(2)点$\mathrm{P}$が$\mathrm{AP}=4$を満たすとき,線分$\mathrm{BP}$の長さを求めよ.
(3)点$\mathrm{P}$が動くとき,$\triangle \mathrm{APB}$の面積の最大値を求めよ.
成城大学 私立 成城大学 2013年 第3問
$1 \leqq x \leqq 4$のとき,関数
\[ y=(\log_2 x)^3-\log_2 x^3+1 \]
の最大値,最小値と,そのときの$x$の値をそれぞれ求めよ.
玉川大学 私立 玉川大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)方程式$9 \sin x-2 \cos^2 x-3=0 (0<x<\pi)$は
\[ [ア] \sin^2 x+[イ] \sin x-[ウ]=0 \]
となるから,解は$\displaystyle x=\frac{[エ]}{[オ]}\pi,\ \frac{[カ]}{[キ]}\pi$である.
(2)$a>0$,$b>0$のとき,$\displaystyle a+\frac{1}{a}$の最小値は$[ク]$で,$\displaystyle \left( a+\frac{2}{b} \right) \left( b+\frac{8}{a} \right)$の最小値は$[ケコ]$である.
(3)同じ大きさの白玉$6$個と赤玉$4$個が袋の中に入っている.この袋の中から同時に$3$個の玉をとりだして目印をつけてから袋にもどし,再び袋の中から$1$個の玉をとりだす.$2$回目にとりだされた玉が目印のついた白玉である確率は
\[ \frac{[サ]}{[シス]} \]
である.
(4)実数$x,\ y$が$x^2+y^2=1$を満たすとき,$2x+3y$の最大値は$\sqrt{[セソ]}$である.
(5)$x^{99}+x^{49}+1$を$x^2-1$で割った余りは,$[タ]x+[チ]$である.
(6)$2$つの方程式
\[ \left\{ \begin{array}{l}
2x^2+(2a+5)x+5a=0 \\
2x^2+3ax+16=0
\end{array} \right. \]
が共通の解をもてば,$a=[ツテ]$または$\displaystyle a=\frac{[トナ]}{[ニ]}$である.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。