タグ「最大値」の検索結果

63ページ目:全1143問中621問~630問を表示)
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$x$の整式$x^3+3mx^2+2(m^2-1)x-4$が$(x+2)^2$で割り切れるとする.このとき,$m$の値は$m=[ア]$であり,商は$[イ]$である.

(2)行列$A=\left( \begin{array}{cc}
x+1 & 2 \\
-5 & y-2
\end{array} \right)$がある.$A^2=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たすとき,$x$と$y$の値を求めると$(x,\ y)=[ウ]$である.また,$A$が逆行列をもたないような$2$つの正の整数$x$と$y$の値を求めると$(x,\ y)=[エ]$である.
(3)$a$は$1$ではない実数,$k$は$3$以上の整数とする.初項が$a$,第$2$項が$1$の等差数列があり,その第$k$項を$b$とする.$b$を$a$と$k$で表すと$b=[オ]$である.この$b$に対して,初項が$1$,第$2$項が$a$,第$3$項が$b$の数列が等比数列になるとき,$a$を$k$で表すと$a=[カ]$である.
(4)曲線$C:y=\log x$上の点$\mathrm{P}(2,\ \log 2)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{Q}$とする.$\mathrm{P}$における$C$の接線を$\ell$,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$とし,$m$と$x$軸との交点を$\mathrm{R}$とする.このとき,$m$の方程式を求めると$y=[キ]$である.また,$\triangle \mathrm{PQR}$の面積$S$を求めると$S=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の最大値が$6$となる確率は$[ケ]$であり,出た目の最大値と最小値の組が$(6,\ 1)$となる確率は$[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)実数$a$に対して,$2$つの関数
\[ f(x)=x^2+4ax+8,\quad g(x)=-x^2+(2a-2)x-10 \]
を考える.このとき,$g(x) \geqq f(x)$となる$x$が存在するような$a$の値の範囲は$[ア]$である.また,$f(x)$の最小値が$g(x)$の最大値より大きくなるような$a$の値の範囲は$[イ]$である.
(2)$0 \leqq \theta<2\pi$のとき,$x=\sin \theta+\cos \theta$のとりうる値の範囲は$[ウ]$であり,$y=\sin 2\theta+2(\sin \theta+\cos \theta)$のとりうる値の範囲は$[エ]$である.
(3)以下の$4$つの数のうち,$1$番大きな数は$[オ]$であり,$1$番小さな数は$[カ]$である.
\[ 7^{777},\quad 10^{7 \log_{10}7},\quad 7^{(7^7)},\quad 7777777 \]
(4)$r$を正の実数とする.円$x^2+(y-1)^2=r^2$と曲線$y=x^2$が$x>0$の範囲に異なる$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもつような$r$の値の範囲は$[キ]$である.さらに,この$r$の範囲で$\displaystyle \mathrm{PQ}=\frac{\sqrt{5}}{2}$が成り立つ$r$の値は$r=[ク]$である.
昭和大学 私立 昭和大学 2013年 第4問
関数$f(x)=4(\sin x-\cos x)^3-3 \sin 2x (0 \leqq x \leqq \pi)$がある.以下の各問に答えよ.

(1)$t=\sin x-\cos x$とおく.$f(x)$を$t$の式で表せ.
(2)(1)の$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最大値とそのときの$x$の値を求めよ.
(4)$f(x)$の最小値とそのときの$x$の値を求めよ.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$f(x)$は$x$の$n$次の多項式で,$f^\prime(x) f^{\prime\prime}(x)=f(x)$および$\displaystyle f^{\prime\prime}(0)=\frac{1}{2}$を満たすとする.このとき$n=[ア]$であり,$f(0)=[イ]$である.
(2)さいころを$3$回投げ,出た目の最大値を$X$とする.このとき,$X=3$となる確率は$[ウ]$であり,$X$の平均は$[エ]$である.
福岡大学 私立 福岡大学 2013年 第6問
関数$f(x)=\sin x(1+\cos x) (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)関数$f(x)$の最大値を求めよ.
(2)曲線$y=f(x)$と$x$軸とで囲まれた図形の面積を求めよ.
日本女子大学 私立 日本女子大学 2013年 第1問
関数$\displaystyle f(x)=\int_0^4 |t(t-x)| \, dt$について,実数$x$が$-5 \leqq x \leqq 5$の範囲を動くとき,次の問いに答えよ.

(1)$f(x)$の最大値と,最大値を与える$x$の値を求めよ.
(2)$f(x)$の最小値と,最小値を与える$x$の値を求めよ.
西南学院大学 私立 西南学院大学 2013年 第2問
点$(x,\ y)$が,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(5,\ 0)$,$\mathrm{C}(2,\ 4)$を頂点とする三角形$\mathrm{ABC}$の内部および周上を動くとき,以下の問に答えよ.

(1)$3x+y$の最大値は$[ケコ]$となる.
(2)$x^2-2x+y^2+2y+2$の最小値は$\displaystyle \frac{[サシ]}{[スセ]}$となり,そのときの$x$の値は$\displaystyle \frac{[ソタ]}{[チツ]}$となる.
京都産業大学 私立 京都産業大学 2013年 第2問
以下の$[ ]$にあてはまる式または数値を入れよ.
\[ f(x)=\frac{1}{2} \sin^2 x+4 \sin x \cos x+\frac{1}{2} \cos^2 x+\sin x+\cos x \quad (0 \leqq x \leqq \pi) \]
の最大値および最小値を次のようにして求める.

まず,$t=\sin x+\cos x$とおくと,$t$の値がとりうる範囲は$[ア]$である.次に,$\sin x \cos x$を$t$の式で表すと$[イ]$である.よって,$f(x)$を$t$の式で表した関数を$g(t)$とすると,$g(t)=[ウ]$となる.
$g(t)$は$[ア]$の範囲で$t=[エ]$のときに最大値$[オ]$をとり,$t=[カ]$のときに最小値$[キ]$をとる.したがって,$f(x)$の最大値は$[オ]$,最小値は$[キ]$である.
龍谷大学 私立 龍谷大学 2013年 第3問
$\angle \mathrm{B}=90^\circ$の直角三角形$\mathrm{ABC}$において,$\mathrm{AC}=1$,$\angle \mathrm{A}=\theta$とする.点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線と辺$\mathrm{AC}$の交点を$\mathrm{H}$とする.さらに,点$\mathrm{H}$から辺$\mathrm{AB}$に下ろした垂線と辺$\mathrm{AB}$の交点を$\mathrm{K}$とする.

(1)$\mathrm{HK}$を$\theta$をもちいて表しなさい.
(2)$\theta$が変化するとき,$\mathrm{HK}$の最大値を求めなさい.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。