タグ「最大値」の検索結果

46ページ目:全1143問中451問~460問を表示)
早稲田大学 私立 早稲田大学 2014年 第2問
実数$a,\ b,\ c$が
\[ a+b+c=8,\quad a^2+b^2+c^2=32 \]
を満たすとき,実数$c$の最大値は$\displaystyle \frac{[オ]}{[カ]}$である.
早稲田大学 私立 早稲田大学 2014年 第3問
連立不等式
\[ \left\{ \begin{array}{l}
y \leqq - \ {\left( \log_{\frac{1}{3}} x \right)}^2+\displaystyle\frac{4}{\log_x 3} \quad \cdots (*) \\
y \geqq \log_3 x \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.

(1)$\log_3 x=t$とおくとき,不等式$(*)$を$t$と$y$で表すと,$y \leqq [サ]t^2+[シ]t$となる.
(2)領域$D$において,$y$のとりうる値の範囲を表す不等式は,次の$①$から$④$の中の$[ス]$の形であり,$a=[セ]$,$b=[ソ]$である.ただし,$[ス]$は$1$から$4$の数をマークして答えること.
\[ ① a \leqq y \leqq b \qquad ② a \leqq y<b \qquad ③ a<y \leqq b \qquad ④ a<y<b \]
(3)$x,\ y$がともに整数である点$(x,\ y)$が領域$D$内を動くとき,$x-y$の最大値は$[タ]$である.
早稲田大学 私立 早稲田大学 2014年 第1問
$0 \leqq x \leqq 8$とする.

(1)不等式
\[ \sin \left( \frac{\pi}{12}x \right)+\cos \left( \frac{\pi}{12}x \right) \leqq \frac{\sqrt{6}}{2} \]
を満たす$x$の範囲は
\[ 0 \leqq x \leqq [ア] \quad \text{および} \quad [イ] \leqq x \leqq 8 \cdots\cdots (*) \]
である.
(2)$x$が$(*)$の範囲を動くとき,関数
\[ f(x)=|x(x-5)(x-8)| \]
は$x=[ウ]$のとき最大値$[エ]$をとる.
京都女子大学 私立 京都女子大学 2014年 第3問
$f(x)=|x+1|-|x^2+x|$とする.次の問に答えよ.

(1)関数$y=f(x)$のグラフをかけ.
(2)関数$y=f(x) (-2 \leqq x \leqq 2)$の最大値および最小値を求めよ.
(3)定数$a$を$0 \leqq a \leqq 2$とするとき,方程式$f(x)=a$の解を求めよ.
昭和大学 私立 昭和大学 2014年 第3問
$a$を定数とし,$2$次関数$y=2x^2-4(a-2)x+2a^2-7a+9$のグラフを$C$とする.以下の各問いに答えよ.

(1)$C$の頂点の座標を求めよ.
(2)$a<2$とする.$x$の範囲を$-1 \leqq x \leqq 1$とするとき,$y$の最大値とそのときの$x$の値を求めよ.
(3)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,$y$の最小値とそのときの$x$の値を,$a$の値の範囲によって場合分けして答えよ.
(4)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,最大値と最小値の差が$6$になるときの$a$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第3問
$a$を定数とし,$2$次関数$y=2x^2-4(a-2)x+2a^2-7a+9$のグラフを$C$とする.以下の各問いに答えよ.

(1)$C$の頂点の座標を求めよ.
(2)$a<2$とする.$x$の範囲を$-1 \leqq x \leqq 1$とするとき,$y$の最大値とそのときの$x$の値を求めよ.
(3)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,$y$の最小値とそのときの$x$の値を,$a$の値の範囲によって場合分けして答えよ.
(4)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,最大値と最小値の差が$6$になるときの$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第2問
以下の不等式$(ⅰ)$~$\tokeigo$をすべて満たす点$(x,\ y)$からなる領域を$S$とする.

$(ⅰ)$ $-x+2y \leqq 20$
$(ⅱ)$ $2x+3y \leqq 44$
$(ⅲ)$ $4x-y \leqq 32$
$\tokeishi$ $x \geqq 0$
$\tokeigo$ $y \geqq 0$

次の問いに答えよ.

(1)領域$S$において$x+3y$を最大にする点$\mathrm{A}(x,\ y)$の$x$座標は$[オ]$,$y$座標は$[カ]$である.このとき$x+3y$の最大値$M$は$[キ]$である.
(2)$a$を実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が,$(1)$で求めた点$\mathrm{A}(x,\ y)$のみの場合,$\displaystyle \frac{a}{b}$がとりうる値の範囲は
\[ [ク]<\frac{a}{b}<[ケ] \]
である.
(3)$a$を正の実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が複数あるとき,$\displaystyle \frac{a}{b}$がとりうる値は$[コ]$である.
(4)$c$を実数とし,上記の不等式$(ⅰ)$,$(ⅱ)$,$\tokeishi$,$\tokeigo$と不等式
\[ (ⅲ)^* 4x-y \leqq c \]
をすべて満たす点$(x,\ y)$からなる領域を$S^{*}$とする.領域$S^*$において$x+3y$の最大値が$(1)$で求めた$M$であるとすると,$c$がとりうる最小値は$[サ]$である.
昭和大学 私立 昭和大学 2014年 第2問
次の問いに答えよ.

(1)分母が$60$で,分子が$59$以下の自然数である分数$\displaystyle \frac{1}{60},\ \frac{2}{60},\ \frac{3}{60},\ \cdots,\ \frac{59}{60}$の中でこれ以上約分できない分数(既約分数)は何個あるか.
(2)$3$つのさいころを同時に投げ,出た目の最大値を$m$とするとき,$m=5$となる確率を求めよ.ただし,$3$つのさいころのすべての目の出方は同様に確からしいものとする.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{E}$とする.直線$\mathrm{BE}$と辺$\mathrm{AC}$の交点を$\mathrm{F}$とする.このとき,$\mathrm{AF}:\mathrm{FC}$を求めよ.
(4)$108$の正の約数の総和を求めよ.
昭和大学 私立 昭和大学 2014年 第2問
次の問いに答えよ.

(1)分母が$60$で,分子が$59$以下の自然数である分数$\displaystyle \frac{1}{60},\ \frac{2}{60},\ \frac{3}{60},\ \cdots,\ \frac{59}{60}$の中でこれ以上約分できない分数(既約分数)は何個あるか.
(2)$3$つのさいころを同時に投げ,出た目の最大値を$m$とするとき,$m=5$となる確率を求めよ.ただし,$3$つのさいころのすべての目の出方は同様に確からしいものとする.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{E}$とする.直線$\mathrm{BE}$と辺$\mathrm{AC}$の交点を$\mathrm{F}$とする.このとき,$\mathrm{AF}:\mathrm{FC}$を求めよ.
(4)$108$の正の約数の総和を求めよ.
大同大学 私立 大同大学 2014年 第1問
次の$[ア]$から$[ネ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$36+2 \sqrt{155}={(\sqrt{[ア][イ]}+\sqrt{[ウ]})}^2$であり,
\[ \frac{1}{\sqrt{36+2 \sqrt{155}}}+\frac{1}{\sqrt{36-2 \sqrt{155}}}=\frac{\sqrt{[エ][オ]}}{[カ][キ]} \]
である.
(2)放物線$y=4x^2-4kx+5k^2+19k-4$が$x$軸の負の部分および正の部分と交わるような$k$の範囲は$\displaystyle -[ク]<k<\frac{[ケ]}{[コ]}$である.この範囲で$k$が動くとき,放物線$y=4x^2-4kx+5k^2+19k-4$が切り取る$x$軸上の線分の長さの最大値は$\displaystyle \frac{[サ] \sqrt{[シ][ス]}}{[セ]}$である.
(3)$3$桁の整数で$3$の倍数は,全部で$[ソ][タ][チ]$個ある.$3$桁の整数で各位の数の和が$k$であるものの個数を$n(k)$とする(たとえば,$3$桁の整数で各位の数の和が$2$であるものは$101$,$110$,$200$の$3$個であるから,$n(2)=3$である).このとき,$n(3)=[ツ]$,$n(27)=[テ]$,$n(24)=[ト][ナ]$であり,$n(6)+n(9)+n(12)+n(15)+n(18)+n(21)=[ニ][ヌ][ネ]$である.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。