タグ「最大値」の検索結果

40ページ目:全1143問中391問~400問を表示)
山口大学 国立 山口大学 2014年 第2問
図のように,円柱$E$と直円錐$F$が半径$1$の球に内接しており,さらに$E$と$F$の底面は一致している.このとき,次の問いに答えなさい.
(図は省略)

(1)円柱$E$の高さを$h$とするとき,円柱$E$の底面の半径と直円錐$F$の高さを,それぞれ$h$を用いて表しなさい.
(2)半径$1$の球に内接する円柱の体積の最大値を求めなさい.
(3)円柱$E$の体積と直円錐$F$の体積が等しいとする.円柱$E$から直円錐$F$が重なっている部分をくり抜いたとき,くり抜かれて残った立体の体積を求めなさい.
島根大学 国立 島根大学 2014年 第3問
$a$を実数とし,$f(x)=x^2+ax+a+3$とする.このとき,次の問いに答えよ.

(1)$2$次方程式$x^2+ax+a+3=0$が正の実数解のみをもつような$a$の値の範囲を求めよ.
(2)放物線$y=f(x)$の頂点の$y$座標を$g(a)$とする.このとき,$a$が$(1)$で求めた範囲を動くとき,$g(a)$の最大値を求めよ.
茨城大学 国立 茨城大学 2014年 第4問
$0$でない実数$t$に対して,座標空間における$3$点$\mathrm{P}(t,\ 0,\ 0)$,$\displaystyle \mathrm{Q} \left( t,\ \frac{1}{1+t^2},\ 0 \right)$,$\displaystyle \mathrm{R} \left( t,\ 0,\ \frac{t}{1+t^2} \right)$を考える.以下の各問に答えよ.

(1)三角形$\mathrm{PQR}$の面積を$S(t)$とする.実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
(2)実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,三角形$\mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
山口大学 国立 山口大学 2014年 第3問
四面体$\mathrm{ABCD}$において,
\[ \mathrm{AB}=\mathrm{AC}=\mathrm{AD}=1,\quad \mathrm{BC}=\sqrt{3},\quad \angle \mathrm{BDC}=\theta \]
のとき,次の問いに答えなさい.ただし,$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$とする.

(1)点$\mathrm{A}$から$\triangle \mathrm{BCD}$を含む平面に垂線を下ろし,その平面との交点を$\mathrm{H}$とする.線分$\mathrm{AH}$,$\mathrm{BH}$,$\mathrm{CH}$,$\mathrm{DH}$の長さを,それぞれ$\theta$を用いて表しなさい.
(2)$t=\cos \theta$とする.$\theta$を一定の値に保ったまま点$\mathrm{D}$が動くときの四面体$\mathrm{ABCD}$の体積の最大値を,$t$を用いて表しなさい.
(3)$(2)$で求めた四面体$\mathrm{ABCD}$の体積の最大値を$V(t)$とする.$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$の範囲で$\theta$が動くときの$V(t)$の最大値を求めなさい.ただし,$V(t)$が最大値をとるときの$\theta$の値は求めなくてよい.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第4問
座標平面において,不等式$y \geqq x^2$の表す領域を$D$とし,$D$内の点$(a,\ b)$に対して連立不等式
\[ y \geqq x^2,\quad x \geqq a,\quad b \geqq y \]
の表す領域を$E(a,\ b)$とする.このとき,次の問いに答えよ.

(1)領域$E(a,\ b)$の面積$S$を$a$と$b$を用いて表せ.
(2)曲線$4y=(x+1)^2$上の点$(2t-1,\ t^2)$が領域$D$内を動くとき,実数$t$の取り得る値の範囲を求めよ.
(3)$(2)$で求めた範囲の$t$に対して,領域$E(2t-1,\ t^2)$の面積を$f(t)$とするとき,関数$f(t)$を$t$の式で表せ.
(4)$(3)$で定めた関数$f(t)$の最大値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
$\triangle \mathrm{ABC}$が与えられているとする.以下の問いに答えよ.

(1)辺$\mathrm{AB}$上の点$\mathrm{P}$,辺$\mathrm{AC}$上の点$\mathrm{Q}$が,それぞれ$\mathrm{AP}:\mathrm{PB}=s:1-s$,$\mathrm{AQ}:\mathrm{QC}=t:1-t$と辺$\mathrm{AB}$,$\mathrm{AC}$を内分するように与えられているとする(即ち$0<s<1$,$0<t<1$とする).直線$\mathrm{PQ}$が$\triangle \mathrm{ABC}$の重心を通るための必要十分条件は$3st=s+t$であることを示せ.
(2)直線$\ell$を$\triangle \mathrm{ABC}$の重心を通る直線とする.$\ell$によって,$\triangle \mathrm{ABC}$はふたつの図形(三角形と四角形,またはふたつの三角形)に分割される.これらの図形の面積のうち,大きい方を$S_1$,小さい方を$S_2$とする.ただし,面積が等しい場合も同じ記号を用い,$S_1=S_2$とする.

(i) $\ell$が$\triangle \mathrm{ABC}$のいずれかの頂点を通ることは$S_1=S_2$となるための必要十分条件であることを示せ.
(ii) $\displaystyle \frac{S_1}{S_2}$の最大値と最小値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第4問
自然数$l,\ m,\ n$に対し,
\[ f(l,\ m,\ n)=\frac{1}{l}+\frac{1}{m}+\frac{1}{n} \]
とする.

(1)$l+m+n=10$のとき,$f(l,\ m,\ n)$の値の最小値と最大値を求めよ.
(2)方程式$f(l,\ m,\ n)=a$の解となる自然数$l,\ m,\ n$の組で$l \leqq m \leqq n$を満たすものが$2$つ以上存在するような$a$の例を挙げ,そのような自然数の組を$2$つ求めよ.
(3)$\displaystyle \frac{11}{12}<f(l,\ m,\ n)<1$を満たす自然数$l,\ m,\ n$の組で$l \leqq m \leqq n$を満たすものをすべて求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。