タグ「最大値」の検索結果

38ページ目:全1143問中371問~380問を表示)
大分大学 国立 大分大学 2014年 第1問
次の各問いに答えなさい.

(1)$n$本中$k$本の当たりが入ったクジを$n$人で順番に引く.引いたクジは元に戻さないとして,$i$番目にクジを引く人の当たる確率が$\displaystyle \frac{k}{n}$であることを示しなさい.ただし,$0<k<n$とする.
(2)関数$y_1=\sin x$と$y_2=2 \sin (a-x)$について,$y=y_1+y_2$の最大値が$\sqrt{7}$になるとき,定数$a$の値を求めなさい.
(3)放物線$y=ax^2$と直線$y=bx$で囲まれる部分の面積を$2$等分する直線$x=p$を求めなさい.ただし,$a,\ b>0$とする.
山形大学 国立 山形大学 2014年 第4問
$\triangle \mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$は,$\mathrm{B}_1 \mathrm{C}=\sqrt{2}$,$\displaystyle \angle \mathrm{B}_1 \mathrm{A}_1 \mathrm{C}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{A}_1 \mathrm{B}_1 \mathrm{C}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$を満たす.下図のように,点$\mathrm{A}_1$から辺$\mathrm{B}_1 \mathrm{C}$に下ろした垂線を$\mathrm{A}_1 \mathrm{B}_2$とし,点$\mathrm{B}_2$から辺$\mathrm{A}_1 \mathrm{C}$に下ろした垂線を$\mathrm{B}_2 \mathrm{A}_2$とする.次に,点$\mathrm{A}_2$から辺$\mathrm{B}_1 \mathrm{C}$に下ろした垂線を$\mathrm{A}_2 \mathrm{B}_3$とし,点$\mathrm{B}_3$から辺$\mathrm{A}_1 \mathrm{C}$に下ろした垂線を$\mathrm{B}_3 \mathrm{A}_3$とする.この操作を繰り返し,辺$\mathrm{A}_1 \mathrm{C}$上に点$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\cdots$を,辺$\mathrm{B}_1 \mathrm{C}$上に点$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\cdots$を定める.自然数$n$に対し,$\triangle \mathrm{A}_n \mathrm{B}_n \mathrm{B}_{n+1}$の面積を$S_n$とし,これらの面積の総和を$\displaystyle T=\sum_{n=1}^\infty S_n$とする.このとき,次の問いに答えよ.
(図は省略)

(1)$S_1=\sin \theta \cos^3 \theta$,$S_2=\sin^5 \theta \cos^3 \theta$を示し,一般項$S_n$を求めよ.

(2)$\displaystyle T=\frac{\sin \theta \cos \theta}{1+\sin^2 \theta}$を示せ.

(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$T$の最大値を求めよ.
山形大学 国立 山形大学 2014年 第3問
次の問に答えよ.

(1)不定積分$\displaystyle \int t \sin t \, dt$を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} |\displaystyle\frac{2|{3}\pi-2t} \sin t \, dt$を求めよ.
(3)関数$f(x)$を$\displaystyle f(x)=\int_0^{\frac{\pi}{2}} |x-2t| \sin t \, dt$で定める($0 \leqq x \leqq \pi$).$f(x)$の最大値,最小値を求め,それらを与える$x$の値をそれぞれ求めよ.
山形大学 国立 山形大学 2014年 第4問
座標平面上の$1$次変換$f$は点$(1,\ 2)$を点$\displaystyle \left( \frac{1}{2}-\sqrt{3},\ 1+\frac{\sqrt{3}}{2} \right)$に,点$(3,\ 4)$を点$\displaystyle \left( \frac{3}{2}-2 \sqrt{3},\ 2+\frac{3 \sqrt{3}}{2} \right)$に移すとする.$\mathrm{O}$を原点として,次の問に答えよ.

(1)$1$次変換$f$を表す行列$A$を求めよ.
(2)点$\mathrm{P}(1,\ 0)$が$f$により点$\mathrm{Q}$に移るとき,$\angle \mathrm{POQ}$を求めよ.また線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{R}$を$(2 \cos \theta,\ 2 \sin \theta)$で定める$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.$f$により,点$\mathrm{R}$は点$\mathrm{S}$に,点$\mathrm{S}$は点$\mathrm{T}$に,点$\mathrm{T}$は点$\mathrm{U}$に,点$\mathrm{U}$は点$\mathrm{V}$に移るとする.

(i) 三角形$\mathrm{ORS}$の面積を求めよ.
(ii) 点$(2,\ 0)$と点$\mathrm{R}$,$\mathrm{S}$,$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を頂点とする六角形の面積$H(\theta)$の最大値と,そのときの$\theta$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y \leqq 2 \]
を同時にみたす領域を$xy$平面上に図示せよ.さらに,点$(x,\ y)$がこの領域内を動くとき,$3x+4y$の最大値とそれを与える$x,\ y$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
$0<r<R$とし,半径$R$の円に半径$r$の小円をいくつか外接させる.ただし,小円どうしは接するか互いに交わらないものとする(図参照).このときの小円の個数の最大値を$n$としたとき,次の問に答えよ.必要ならば,下の数表(三角関数表)を用いてよい.
(図は省略)

$*$ 三角関数表は省略した.
(1)$R=3r$のとき,$n$を求めよ.
(2)$\displaystyle n \leqq \pi \left( \frac{R}{r}+1 \right)$を示せ.
高知大学 国立 高知大学 2014年 第1問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=(x-\cos \theta+\sin \theta)^2+2 \sin^2 \theta-1$について,次の問いに答えよ.

(1)方程式$f(x)=0$が実数解を持つような$\theta$の範囲を求めよ.
(2)方程式$f(x)=0$が実数解を持つとき,その二つの解を$\alpha,\ \beta$とする.このとき,$\alpha+\beta$の最大値および最小値を求めよ.
(3)関数$y=f(x)$のグラフと$x$軸で囲まれる部分の面積が$\displaystyle \frac{\sqrt{2}}{3}$となるときの$\theta$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。