タグ「最大値」の検索結果

36ページ目:全1143問中351問~360問を表示)
熊本大学 国立 熊本大学 2014年 第1問
空間内の$1$辺の長さ$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,$\mathrm{OA}$の中点を$\mathrm{P}$とする.以下の問いに答えよ.

(1)$0<t<1$に対し,$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.また,$\mathrm{PM}+\mathrm{MQ}$が最小となる$\mathrm{OB}$上の点を$\mathrm{M}$とし,$\mathrm{PN}+\mathrm{NQ}$が最小となる$\mathrm{OC}$上の点を$\mathrm{N}$とする.このとき,$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を,それぞれ$t$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{QMN}$の面積を$t$を用いて表せ.
(3)$t$が$0<t<1$の範囲を動くとき,$\triangle \mathrm{QMN}$の面積の最大値を求めよ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)関数$y=2 \cos x-\cos 2x$の$0 \leqq x \leqq \pi$における最大値を求めよ.
(2)関数$\displaystyle y=(\log_{0.5}x)^2-\frac{1}{2}(\log_{0.5}x)+\frac{1}{2}$の$0.5 \leqq x \leqq 2$における最大値と最小値を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)関数$y=-2 \sin 2x+2 \cos 2x+3$の最大値と最小値を求めよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とする.
(2)$\displaystyle \lim_{x \to 1} \frac{a \sqrt{x+3}-8}{x-1}$が有限な値になるように定数$a$の値を定め,そのときの極限値を求めよ.
(3)直線$y=x$に関する対称移動の$1$次変換を$f$とする.$1$次変換$g$が点$(2,\ 4)$を点$(4,\ 6)$に移し,合成変換$f \circ g$が点$(2,\ 2)$を点$(-12,\ 4)$に移すとき,$g$を表す行列を求めよ.
(4)次の不定積分を求めよ.
\[ \int x \log (x+1) \, dx \]
長岡技術科学大学 国立 長岡技術科学大学 2014年 第3問
平面上の原点を$\mathrm{O}(0,\ 0)$とし,点$\mathrm{A}(2,\ 0)$をとる.また,$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$上の点$\mathrm{P}$に対して$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{APO}=\phi$,$\mathrm{AP}=z$とおく.ただし,$0<\theta<\pi$とする.下の問いに答えなさい.

(1)正弦定理を用いて$z$を$\theta$と$\phi$で表しなさい.
(2)余弦定理を用いて$z^2$を$\theta$で表しなさい.
(3)$\displaystyle \frac{dz}{d\theta}$を$\phi$で表しなさい.
(4)$\displaystyle \frac{dz}{d\theta}$の最大値,およびその最大値を与える$\theta$の値を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x},\ x>0$を考える.下の問いに答えなさい.

(1)$f(x)$の最大値,およびその最大値を与える$x$の値を求めなさい.
(2)$(1)$の結果を利用して$e^3>3^e$であることを証明しなさい.ただし,$e$は自然対数の底である.
東京医科歯科大学 国立 東京医科歯科大学 2014年 第2問
$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす実数$\theta$に対し,$xyz$空間内の$4$点$\mathrm{A}(\cos \theta,\ \cos \theta,\ \sin \theta)$,$\mathrm{B}(-\cos \theta,\ -\cos \theta,\ \sin \theta)$,$\mathrm{C}(\cos \theta,\ -\cos \theta,\ -\sin \theta)$,$\mathrm{D}(-\cos \theta,\ \cos \theta,\ -\sin \theta)$を頂点とする四面体の体積を$V(\theta)$,この四面体の$xz$平面による切り口の面積を$S(\theta)$とする.このとき以下の各問いに答えよ.

(1)$\displaystyle S \left( \frac{\pi}{6} \right),\ V \left( \frac{\pi}{6} \right)$をそれぞれ求めよ.

(2)$\displaystyle 0<\theta<\frac{\pi}{2}$における$S(\theta)$の最大値を求めよ.

(3)$\displaystyle 0<\theta<\frac{\pi}{2}$における$V(\theta)$の最大値を求めよ.
旭川医科大学 国立 旭川医科大学 2014年 第3問
$a$を正の定数とする.$\mathrm{AB}=a$,$\mathrm{AC}=2a$,$\displaystyle \angle \mathrm{BAC}=\frac{2}{3}\pi$である$\triangle \mathrm{ABC}$と,
\[ |2 \overrightarrow{\mathrm{AP}}-2 \overrightarrow{\mathrm{BP}}-\overrightarrow{\mathrm{CP}}|=a \]
を満たす動点$\mathrm{P}$がある.このとき,次の問いに答えよ.

(1)辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とするとき,$|\overrightarrow{\mathrm{AD}}|$を求めよ.
(2)$|\overrightarrow{\mathrm{AP}}|$の最大値を求めよ.
(3)線分$\mathrm{AP}$が通過してできる図形の面積$S$を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。