タグ「最大値」の検索結果

31ページ目:全1143問中301問~310問を表示)
日本女子大学 私立 日本女子大学 2015年 第1問
$a$を実数とする.関数
\[ f(x)=\cos 2x+4a \sin x-2a \]
の最大値および最小値を求めよ.
広島経済大学 私立 広島経済大学 2015年 第3問
放物線$y=2x^2$を平行移動して得られる放物線について次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$x$軸方向に$-3$,$y$軸方向に$-5$平行移動した放物線の方程式は
$y=[$18$]x^2+[$19$]x+[$20$]$である.
(2)頂点が点$(2,\ 3)$である放物線の方程式は
$y=[$21$]x^2-[$22$]x+[$23$]$である.
(3)$x$軸との交点の$x$座標が$-2$と$4$である放物線の方程式は
$y=[$24$]x^2-[$25$]x-[$26$]$である.
(4)点$\displaystyle \left( 0,\ -\frac{1}{2} \right)$を通り,頂点が直線$y=2x$上にある放物線の方程式は
$\displaystyle y=[$27$]x^2+[$28$]x-\frac{[$29$]}{[$30$]}$である.
(5)放物線の軸は直線$x=3$であり,この放物線を表す関数の$1 \leqq x \leqq 4$における最大値は$5$であるとする.このとき,放物線の方程式は
$y=[$31$]x^2-[$32$]x+[$33$]$である.
西南学院大学 私立 西南学院大学 2015年 第2問
以下の問に答えよ.

(1)$\displaystyle 0<\alpha<\frac{\pi}{2},\ \frac{\pi}{2}<\beta<\pi$とする.$\displaystyle \cos \alpha=\frac{2}{3},\ \sin \beta=\frac{4}{5}$のとき,
\[ \sin (\alpha-\beta)=-\frac{\mkakko{ケ}+\mkakko{コ} \sqrt{\mkakko{サ}}}{15},\quad \cos (\alpha+\beta)=-\frac{\mkakko{シ}+\mkakko{ス} \sqrt{\mkakko{セ}}}{15} \]
である.
(2)$0 \leqq \theta \leqq \pi$とするとき,関数
\[ f(\theta)=\sin \theta+\sin \left( \theta+\frac{\pi}{3} \right)+\sin \left( \theta+\frac{2}{3}\pi \right) \]
の最大値は$[ソ]$,最小値は$[タ] \sqrt{[チ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
以下の問に答えよ.

(1)$2$次不等式$ax^2+8x+b>0$の解が$-1<x<5$であるとき,$a=[アイ]$,$b=[ウエ]$である.
(2)$y=|x^2+x-2|+x+1$の$-3 \leqq x \leqq 1$における最大値は$[オ]$,最小値は$[カキ]$である.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
西南学院大学 私立 西南学院大学 2015年 第4問
平面上に$2$つの円があり,それぞれの半径は$7$と$4$である.この$2$つの円の中心間の距離を$d$,共通接線の数を$n$とすると,$d$の値に応じて$n$の値が定まる.ただし,共通接線が存在しない場合は$n=0$とする.以下の問に答えよ.

(1)$d$が任意の値をとるとき,$n$の最大値は$[ヌ]$である.
(2)$d \leqq 11$のとき,$n$の最大値は$[ネ]$である.
(3)$d<[ノ]$のとき,$n=0$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
次の問いに答えよ.

(1)計算せよ.
\[ \sum_{k=1}^{10} (2k-1)^2=\kakkofour{$101$}{$102$}{$103$}{$104$} \]
(2)計算せよ.
\[ \sum_{k=1}^{20} (-1)^{k-1}k^2=\kakkofour{$105$}{$106$}{$107$}{$108$} \]
(3)$1$から$20$までの数を$2$つの数列$a_1,\ a_2,\ \cdots,\ a_{10}$と$b_1,\ b_2,\ \cdots,\ b_{10}$に分ける.
\[ S=\sum_{k=1}^{10} a_kb_k \]
と定義し,分け方を種々考え,$S$の最小値と最大値を求めると,それぞれ
\[ [$109$][$110$][$111$],\quad \kakkofour{$112$}{$113$}{$114$}{$115$} \]
となる.(ヒント:増加数列や減少数列を考える.)
中部大学 私立 中部大学 2015年 第1問
次の$[ア]$から$[ス]$にあてはまる数字または符号を入れよ.

(1)$2$次関数$y=x^2-4x+3$のグラフは,$y=x^2+2x+5$のグラフを$x$軸方向に$[ア]$,$y$軸方向に$[イ][ウ]$平行移動したものである.
(2)$1$から$8$までの自然数の中から異なる$4$個の数を選ぶとき,最大数が$7$以下となるような選び方は$[エ][オ]$通りあり,最大数が$7$となるような選び方は$[カ][キ]$通りある.
(3)方程式$(\log_3 2)(\log_4 \sqrt{x})=\log_x 3$の解は,$\displaystyle x=\frac{[ク]}{[ケ]},\ [コ]$である.
(4)実数$x,\ y$が$3x^2+2y^2=6x$を満たすとき,$x^2+2y^2$の最大値は$\displaystyle \frac{[サ]}{[シ]}$であり,最小値は$[ス]$である.
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$8x^3-27y^3$を因数分解すると$[ア]$である.
(2)関数$f(x)=x^2-4x+5 (-1 \leqq x \leqq 3)$の最大値は$[イ]$,最小値は$[ウ]$である.
(3)$\displaystyle \frac{3+i}{1-2i}$を$a+bi$の形にすると,$a=[エ]$,$b=[オ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(4)不等式$\log_3 (1-x) \leqq \log_{\frac{1}{3}} (2x+1)$を満たす$x$の値の範囲は$[カ]$である.
(5)日曜日から土曜日までのうち$3$つの曜日を選び,毎週それらの曜日に出勤することとする.出勤する曜日の選び方は全部で$[キ]$通りある.また,$2$日は連続して出勤するが,$3$日は連続して出勤しないような曜日の選び方は$[ク]$通りある.
京都産業大学 私立 京都産業大学 2015年 第3問
$xy$平面上に$\triangle \mathrm{OAB}$がある.ただし,点$\mathrm{O}$は原点,点$\mathrm{A}$の座標は$(5,\ 0)$,点$\mathrm{B}$の$y$座標は正であり,$\mathrm{OB}=4$,$\angle \mathrm{AOB}=\theta$であるとする.さらに,$\triangle \mathrm{OAB}$の外側に,辺$\mathrm{AB}$を共有する正方形$\mathrm{ABCD}$がある.

(1)$\theta$を用いて表すと,$\mathrm{B}$の座標は$[ア]$であり,$\mathrm{C}$の座標は$[イ]$である.
(2)$\mathrm{C}$の$x$座標は$\theta=[ウ]$のとき最大値をとり,$\mathrm{C}$の$y$座標は$\theta=[エ]$のとき最大値をとる.
以下では,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$が一直線上にあるとする.
(3)$\mathrm{AB}=[オ]$である.$\triangle \mathrm{OAB}$の内接円の半径は$[カ]$である.
(4)$\triangle \mathrm{OAD}$の外接円の半径を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。