タグ「最大値」の検索結果

26ページ目:全1143問中251問~260問を表示)
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$3S_n=a_n+2n-1$を満たすならば,
\[ a_n=\frac{[ア]}{[イ]} \left( \frac{[ウ]}{[エ]} \right)^n+\frac{[オ]}{[カ]} \]
である.
(2)$t$を実数とする.座標空間において,点$(2t,\ 1,\ -t)$を通りベクトル$(-1,\ 2,\ 1)$と平行な直線を$\ell$とする.点$\mathrm{P}$の座標を$(0,\ 2,\ 0)$とする.

(i) 点$\mathrm{P}$から$\ell$に垂線$\mathrm{PH}$を下ろすとき,
\[ \mathrm{PH}^2=\frac{[キ]}{[ク]}t^2+[ケ]t+\frac{[コ]}{[サ]} \]
である.
(ii) 点$\mathrm{P}$を中心とする半径$2$の球面を$S$とする.$S$と$\ell$が異なる$2$点で交わるとき,その$2$点間の距離は$\displaystyle t=\frac{[シ]}{[ス]}$のとき最大値をとる.
上智大学 私立 上智大学 2015年 第3問
$a$を実数とし,$f(x)=(x-a)(x^2-2x-11)$とおく.集合
\[ A=\{x \;\bigl|\; f(x)<0,\ x \text{は実数} \} \]
を考える.また,$n$を整数とし,集合

$I_n=\{x \;\bigl|\; x>n,\ x \text{は実数} \}$
$J_n=\{x \;\bigl|\; x<n,\ x \text{は実数} \}$

を考える.

(1)$a=-4$のとき,$J_n \supset A$となる$n$の最小値は$[ヘ]$であり,$J_n \subset A$となる$n$の最大値は$[ホ]$である.
(2)$a=-4$,$n=-3$のとき,$I_n \cap A$に含まれる整数の個数は$[マ]$個である.
(3)$a=1$のとき,$I_n \cap A$が空集合でない$n$の最大値は$[ミ]$であり,$J_n \subset A$となる$n$の最大値は$[ム]$である.
(4)$a=1$のとき,
\[ x<x^\prime \quad \text{かつ} \quad f(x)>m>f(x^\prime) \]
を満たす実数$x,\ x^\prime$が存在するような整数$m$の最小値は$[メ]$,最大値は$[モ]$である.
(5)$a=7$のとき,$J_n \supset A$となる$n$の最小値は$[ヤ]$であり,$J_n \subset A$となる$n$の最大値は$[ユ]$である.
東京理科大学 私立 東京理科大学 2015年 第2問
実数$a,\ b$に対して,$f(x)=x^2+ax+b$とする.次の問いに答えよ.

(1)$-1 \leqq x \leqq 1$における$f(x)$の最大値を$M$,最小値を$m$とする.

\mon[$\mathrm{(a)}$] $M,\ m$をそれぞれ以下の場合に分けて$a,\ b$を用いて表せ.

(i) $a \leqq -2$
(ii) $-2<a<2$
(iii) $2 \leqq a$

\mon[$\mathrm{(b)}$] $M-m$が最小となるような$a$の値を求め,さらにそのときの$M-m$の値を求めよ.

(2)$-1 \leqq x \leqq 1$における$|f(x)|$の最大値が最小となるような$a,\ b$の値を求め,さらにそのときの$|f(x)|$の最大値を求めよ.
上智大学 私立 上智大学 2015年 第3問
$t$を実数とする.座標平面上に,$2$点$\mathrm{A}(t,\ 0)$,$\mathrm{B}(0,\ 1-\sqrt{3}t)$と,原点を中心とする半径$1$の円$C$がある.点$\mathrm{P}$が円$C$上を動くときの$2$つのベクトル$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{BP}}$の内積の最大値を$M_t$とおき,$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=M_t$となる点$\mathrm{P}$を$\mathrm{P}_t$と表す.

(1)$\displaystyle t=\frac{1}{\sqrt{3}}$のとき,
\[ M_t=[ナ]+\frac{1}{\sqrt{[ニ]}} \]
であり,$\mathrm{P}_t$の座標は$\left( [ヌ],\ [ネ] \right)$である.
(2)実数$t$が$t \geqq 0$の範囲を動くとき,$M_t$は$\displaystyle t=\frac{\sqrt{[ノ]}}{[ハ]}$で最小値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.

(3)$\mathrm{P}_t$の座標を$(\cos \theta,\ \sin \theta)$(ただし,$0 \leqq \theta<2\pi$)と表す.実数$t$が$t \geqq 0$の範囲を動くとき,$\theta$は
\[ \frac{[ヘ]}{[ホ]}\pi<\theta \leqq \frac{[マ]}{[ミ]}\pi \]
の範囲を動く.
上智大学 私立 上智大学 2015年 第3問
平面上に長さ$5$の線分$\mathrm{AB}$がある.$\mathrm{B}$を中心とする半径$4$の円周上を点$\mathrm{C}$が動く.ただし,$\mathrm{C}$は直線$\mathrm{AB}$上にないとする.$\mathrm{A}$で直線$\mathrm{AB}$に接し$\mathrm{C}$を通る円を$\mathrm{O}$とする.直線$\mathrm{BC}$と円$\mathrm{O}$の交点のうち,$\mathrm{C}$でない点を$\mathrm{D}$とする.


(1)$\displaystyle \mathrm{CD}=\frac{[ク]}{[ケ]}$である.

(2)円$\mathrm{O}$の半径のとり得る長さの最小値は$\displaystyle \frac{[コ]}{[サ]}$である.

(3)$\triangle \mathrm{ACD}$のとり得る面積の最大値は$\displaystyle \frac{[シ]}{[ス]}$である.

(4)$\cos \angle \mathrm{ADC}$のとり得る値の最小値は$\displaystyle \frac{[セ]}{[ソ]}$である.

(5)円$\mathrm{O}$の半径と$\triangle \mathrm{ABC}$の外接円の半径が一致するとき$\mathrm{AD}=[タ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章の$[ア]$から$[ム]$までに当てはまる数字$0$~$9$を求めなさい.

(1)$c$を定数として,$3$次関数$f(x)$を
\[ f(x)=\frac{1}{3}x(x-1)(x-c) \]
と定める.$f(x)$の導関数$f^\prime(x)$は$\alpha,\ \beta (\alpha<\beta)$において
\[ f^\prime(\alpha)=0,\quad f^\prime(\beta)=0 \]
を満たすものとする.
解と係数の関係により,
\[ \alpha+\beta=\frac{[ア]}{[イ]}(c+1),\quad \alpha\beta=\frac{1}{[ウ]}c \]
である.したがって


$\displaystyle\frac{f(\alpha)-f(\beta)}{\alpha-\beta}=-\frac{[エ]}{[オ][カ]}(c^2-c+[キ])$

$\displaystyle (\alpha-\beta)^2=\frac{[ク]}{[ケ]}(c^2-c+1)$


となるので,$\displaystyle c=\frac{1}{2}$のとき
\[ f(\alpha)-f(\beta)=\frac{\sqrt{[コ]}}{[サ][シ]} \]
である.
(2)定数$\theta$に対して,数列$\{a_n\}$を
\[ a_n=\cos (2^{n-1}\theta) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(i) 余弦の$2$倍角の公式により,数列$\{a_n\}$は漸化式
\[ a_{n+1}=[ス] {a_n^2}-1 \]
を満たす.
(ii) $\theta$が$\displaystyle \cos \theta=\frac{1}{3}$を満たすとき
\[ a_3=\frac{[セ][ソ]}{[タ][チ]} \]
である.
(iii) $\displaystyle \theta=\frac{5}{96}\pi$とするとき
\[ a_{n+1}=a_n \]
を満たす最小の正の整数$n$は$[ツ]$である.

(3)大,中,小の$3$個のさいころを同時に投げるものとする.

(i) $1$の目が少なくとも$1$つ出る確率は$\displaystyle \frac{[テ][ト]}{[ナ][ニ][ヌ]}$である.
(ii) 出る目の最大値が$5$である確率は$\displaystyle \frac{[ネ][ノ]}{[ハ][ヒ][フ]}$である.
(iii) 大のさいころの目は中のさいころの目以上であり,かつ,小のさいころの目は中のさいころの目以下である確率は$\displaystyle \frac{[ヘ]}{[ホ][マ]}$である.
\mon[$\tokeishi$] 大と小のさいころの目の平均が中のさいころの目と等しい確率は$\displaystyle \frac{1}{[ミ][ム]}$である.
北星学園大学 私立 北星学園大学 2015年 第1問
定義域を$-2 \leqq x \leqq 3$とする放物線$y=ax^2+2ax+b$がある.ただし,その形は下に凸であるとする.以下の問に答えよ.

(1)この関数の最大値が$6$,最小値が$-2$であるとき,定数$a,\ b$の値を求めよ.
(2)$(1)$で求めた放物線を原点に関して対称移動したあとの放物線の式を求めよ.
福岡大学 私立 福岡大学 2015年 第9問
関数$\displaystyle f(x)=\frac{1+x}{1+x^2}$について,次の問いに答えよ.

(1)$f(x)$の最大値と最小値を求めよ.
(2)$\displaystyle \int_{-\sqrt{3}}^{\sqrt{3}} f(x) \, dx$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.

(1)実数$a$に対し,$2$つの$2$次関数

$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$

を考える.

(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.

$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」

このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.

(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,

$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$

となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。