タグ「最大値」の検索結果

111ページ目:全1143問中1101問~1110問を表示)
東京海洋大学 国立 東京海洋大学 2010年 第5問
$n$を$5$以上の自然数とする.箱の中に,$1$から$n$までの自然数を$1$つずつ書いた$n$枚のカードがある.このとき,次の問に答えよ.

(1)箱から$2$枚のカードを同時に取り出すとき,取り出した$2$枚のカードの数の和が$6$である確率を$n$で表せ.
(2)箱から$3$枚のカードを同時に取り出すとき,取り出した$3$枚のカードの数の最大値を$M$とする.このとき,$M \leqq 5$である確率を$n$で表せ.
(3)最大値$M$の期待値を$n$で表せ.
早稲田大学 私立 早稲田大学 2010年 第3問
$a,\ b$を実数とし,$xy$平面上の次の$2$つの関数のグラフについて考える.
\[ \begin{array}{lll}
y = e^{|x|} & & \cdots\cdots① \\
y = ax+b & & \cdots\cdots②
\end{array} \]
以下の問に答えよ.

(1)$①,②$がただ$1$つの共有点をもつとき,$b$を$a$で表し,そのグラフを$ab$平面上に図示せよ.
(2)(1)のグラフを$b=f(a)$と表す.定数$p$に対して
\[ pa+f(a) \]
を最大にする$a$およびその最大値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
早稲田大学 私立 早稲田大学 2010年 第3問
座標平面上で,C$_1$,C$_2$,C$_3$を,それぞれ,中心が$(0,\ 0),\ (3,\ 0),\ (5,\ 0)$,半径が$2,\ 1,\ 1$である円周とする.点Pは点$(2,\ 0)$を出発点とし,円周C$_1$上を反時計回りに等速で$2a$秒で一周する.点Qは点$(4,\ 0)$を出発点とし,先ず円周C$_2$上を反時計回りに等速で$a$秒で一周し,続いて円周C$_3$上を時計回りに等速で$a$秒で一周する.\\
\quad 点P,Qが同時に出発するとき,線分PQの長さの最大値と最小値を求めよ.
\quad ただし,$a$は正の定数である.
早稲田大学 私立 早稲田大学 2010年 第1問
以下の問に答えよ.

(1)$a$を$0$以上$7$以下の整数,$b$を$88$以下の正の整数,$c$を$1024$の倍数とする.このとき,$89a+b$のとり得る値の最大値は
[ア][イ][$1$]である.$89a+b-c+669$が$1024$の倍数のとき,$89a+b=[ウ][エ][$5$]$となって,$a=[オ]$,$b=[カ][$8$]$となる.
(2)数列
\[ \{a_n\} : \frac{1}{1},\ \frac{1}{2},\ \frac{3}{2},\ \frac{1}{3},\ \frac{3}{3},\ \frac{5}{3},\ \frac{1}{4},\ \frac{3}{4},\ \frac{5}{4},\ \frac{7}{4},\ \frac{1}{5},\ \cdots \]
について次の問いに答えよ.

(i) $\displaystyle \frac{35}{49}$は数列$\{a_n\}$の第$\kakkofour{キ}{ク}{ケ}{4}$項である.
(ii) 数列$\{a_n\}$の第$2008$項は
\[ a_{2008}=\frac{[コ][サ][9]}{[シ][3]} \]
である.
(iii) 数列$\{a_n\}$の初項から第$1005$項までの和は
\[ [ス][セ][5] \]
である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の問いに答えよ.

(1)平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{BC}$の垂直二等分線は$[ア]x+y+[イ]=0$となる.また,平面上で$\mathrm{PC} \leqq \mathrm{PO}$,$\mathrm{PC} \leqq \mathrm{PA}$,$\mathrm{PC} \leqq \mathrm{PB}$を満たす点$\mathrm{P}$の存在する範囲は$3$点$(0,\ 1)$,$(2,\ [ウ])$,$([エ],\ [オ])$を頂点とする三角形の内部および周であり,この三角形の面積は$[カ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,点$\mathrm{O}$を定点として,$2$点$\mathrm{A}$,$\mathrm{B}$は次の条件を満たしながら動く.

$\angle \mathrm{AOB}=60^\circ$
$|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|^2+|\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}|^2=8$

さらに,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるようにとるとき,$|\overrightarrow{\mathrm{OC}}|$の最大値は$\sqrt{[キ]}$である.
北海学園大学 私立 北海学園大学 2010年 第1問
次の各問いに答えよ.

(1)$\displaystyle \sin \theta-\cos \theta=\frac{1}{3}$のとき,$\sin \theta \cos \theta$と$\displaystyle \frac{1}{\sin \theta}-\frac{1}{\cos \theta}$の値を求めよ.
(2)$2$次関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$12$,最小値が$4$であるとき,定数$a,\ b$の値を求めよ.
(3)$4x^2-13xy+10y^2+18x-27y+18$を因数分解せよ.
北海学園大学 私立 北海学園大学 2010年 第5問
三角形$\mathrm{ABC}$において$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{a}$,$\mathrm{CA}=2$,$\angle \mathrm{BAC}=\theta$とする.次の問いに答えよ.

(1)$\cos \theta$を$a$の式で表せ.また,$a$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$の面積が最大となるような$a$の値を求めよ.また,このときの外接円の半径$R$と内接円の半径$r$をそれぞれ求めよ.
(3)上の$(2)$が成り立つとき,三角形$\mathrm{ABC}$の外接円の弧$\mathrm{CA}$上の点$\mathrm{D}$によってできる四角形$\mathrm{ABCD}$の面積の最大値を求めよ.ただし,弧$\mathrm{CA}$上には点$\mathrm{B}$がないものとする.
東北学院大学 私立 東北学院大学 2010年 第1問
$2$次関数$y=x^2+ax+b$と,この関数のグラフ$C$について,次の問いに答えよ.ただし,$a,\ b$は定数とする.

(1)$C$の頂点が$(2,\ -1)$のとき,$C$と$x$軸との交点の座標を求めよ.
(2)$C$の軸が直線$x=-1$で,$C$が点$(1,\ 1)$を通るとき,この関数の最小値を求めよ.
(3)$C$を$x$軸方向に$a$,$y$軸方向に$-a$平行移動すると,$2$点$(0,\ 0)$,$(2,\ -6)$を通る放物線になるとき,$a,\ b$の値を求めよ.
(4)この関数の$-1 \leqq x \leqq 2$における最小値が$0$,最大値が$8$であるとき,$a,\ b$の値を求めよ.
東北学院大学 私立 東北学院大学 2010年 第4問
曲線$y=9-x^2$上に$2$点$\mathrm{A}(-3,\ 0)$,$\mathrm{P}(t,\ 9-t^2)$をとる.次の問いに答えよ.ただし,$-3<t<3$とする.

(1)$\mathrm{P}$から$x$軸に垂線$\mathrm{PQ}$をおろすとき,$\triangle \mathrm{PAQ}$の面積の最大値と,そのときの$t$の値を求めよ.
(2)点$\mathrm{P}$におけるこの曲線の接線と原点との距離が$3$であるとき,$t$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。