タグ「最大値」の検索結果

110ページ目:全1143問中1091問~1100問を表示)
千葉大学 国立 千葉大学 2010年 第9問
$a$を1より大きい実数とし,座標平面上に,点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$をとる.曲線$\displaystyle y=\frac{1}{x}$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$と,曲線$\displaystyle y=\frac{a}{x}$上の点$\displaystyle \mathrm{Q} \left( q,\ \frac{a}{q} \right)$が,3条件

(1)$p>0,\ q>0$
(2)$\angle \mathrm{AOP}<\angle \mathrm{AOQ}$
(3)$\triangle \mathrm{OPQ}$の面積は3に等しい

をみたしながら動くとき,$\tan \angle \mathrm{POQ}$の最大値が$\displaystyle \frac{3}{4}$となるような$a$の値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第1問
$a$を正の実数とする.また,対数は自然対数,$e$は自然対数の底を表す.以下の問いに答えよ.

(1)不定積分$\displaystyle \int \log (ax) \, dx$を求めよ.
(2)$0<x<e$の範囲で曲線$y=\log (ax)$と直線$y=1$とが交わるように,$a$の値の範囲を定めよ.
(3)$a$の値が(2)で求めた範囲にあるとする.座標平面において,曲線$y=\log (ax)$と2直線$y=0,\ x=e$とで囲まれた図形のうち,$y \leqq 1$の部分の面積を$S_1$,$y \geqq 1$の部分の面積を$S_2$とする.$S=S_1-S_2$を$a$を用いて表せ.
(4)$a$の値が(2)で求めた範囲にあるとする.$S$の最大値とそのときの$a$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
関数$y=x^3-3x^2+3$について,次の問いに答えよ.

(1)この関数のグラフに点$(3,\ -1)$から接線を引く.このとき,すべての接点の座標を求めよ.
(2)(1)で求めた接点のうち,その$x$座標が最小のものを$\mathrm{A}$,最大のものを$\mathrm{B}$とする.2点$\mathrm{A},\ \mathrm{B}$を通る直線の方程式を求めよ.
(3)この関数のグラフ上の点を$\mathrm{P}(s,\ s^3-3s^2+3)$とする.ただし,$2-\sqrt{3}<s<2+\sqrt{3}$である.このとき,点$\mathrm{P}$と(2)で求めた直線との距離$d$を$s$で表し,$d$の最大値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\log_{\frac{1}{3}} \left( \frac{x}{3} \right) \cdot \log_{\frac{1}{3}}(3x)$を考える.

(i) $t=\log_{\frac{1}{3}}x$とおくとき,$y$を$t$を用いて表せ.
(ii) $\displaystyle \frac{1}{9} \leqq x \leqq 3$のとき,$y$の最大値と最小値を求めよ.

(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,関数$y=2 \sin^2 x-\sin x \cos x+3 \cos^2 x$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
関数$\displaystyle f(x)=\frac{x+2}{x^2+4a}$を考える.ただし,$a$は$1 \leqq a<2$をみたす定数とする.導関数$f^\prime(x)$に対して,$f^\prime(x)=0$となる$x$のうち正のものを$\beta$とする.次の問いに答えよ.

(1)$x \geqq 0$における$f(x)$の増減を調べ,極値を求めよ.
(2)$f(x)=f(a)$をみたす$x$を求めよ.
(3)$\displaystyle a-1<\frac{2a}{2+a}$および$\beta<a$を示せ.
(4)$a-1 \leqq x \leqq a$において,$f(x)$の最小値が$\displaystyle \frac{4}{9}$であるとき,$f(x)$の最大値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第6問
$y=2(\sin^3x-\cos^3x)-6 \sin x \cos x(\sin x-\cos x-1) \ (0 \leqq x \leqq \pi)$に対して,次の問いに答えよ.

(1)$t=\sin x-\cos x$とおくとき,$t$の範囲を求めよ.
(2)$y$を$t$で表せ.
(3)$y$の最大値と最小値を求めよ.
山梨大学 国立 山梨大学 2010年 第2問
$\displaystyle f(x)=\cos x+\frac{1}{2}\sin 2x \ (0 \leqq x \leqq 2\pi)$とする.

(1)関数$f(x)$の最大値と最小値,および,それらを与える$x$を求めよ.
(2)曲線$y=f(x)$の変曲点は$4$個あることを示せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,$2$つの曲線$y=f(x)$と$y=\cos x$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(1,\ 3)$のなす角$\theta$を求めよ.
(2)放物線$y=-x^2+4x+8$と$x$軸とで囲まれた図形に内接し,$x$軸上に$2$つの頂点をもつ長方形の面積の最大値を求めよ.
(3)整数$5^{2010}$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(4)関数$y=\sin x-\cos x+\sqrt{2} \ (0 \leqq x \leqq 2\pi)$の最大値と最小値を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第3問
連立不等式$x+y \leqq 3$,$x+y \geqq -1$,$y \leqq 3x+3$,$y \geqq 3x-1$の表す領域を$D$とするとき,次の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき,$x-y$の最大値を求めよ.
(3)点$(x,\ y)$が領域$D$を動くとき,$y-(x-1)^2$の最大値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。