タグ「最大値」の検索結果

108ページ目:全1143問中1071問~1080問を表示)
防衛大学校 国立 防衛大学校 2010年 第1問
実数$x,\ y$について,関係式$x^2+xy+y^2 = 3$が成り立つとする.このとき,次の問に答えよ.

(1)$x+y=s,\ xy = t$とおくとき,$t$を$s$の式で表せ.
(2)$s$のとり得る値の範囲を求めよ.
(3)$x^2+y^2+x+y=k$とおくとき,$k$を$s$の式で表せ.
(4)$k$のとり得る値の最大値$M$と最小値$m$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第3問
関数$f(x)=x^3-3x^2+3ax+b \ (a,\ b \text{は定数})$について,次の問に答えよ.

(1)$f(x)$が極値を持つような$a$の値の範囲を求めよ.
(2)$f(x)$の極大値と極小値の差が32となるとき,$a$の値を求めよ.
(3)(2)で求めた$a$の値に対し,$f(x)$の区間$-4 \leqq x \leqq 4$における最大値が5であるとする.このとき,$b$の値とこの区間での$f(x)$の最小値$m$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第1問
$1$から$n$までの数字が$1$つずつ書かれた合計$n$枚のカードからランダムに$1$枚取り出して,書かれた数字を記録し,カードを元に戻す.この操作を$k$回繰り返したとき,記録された$k$個の数字の最大値を$X$とする(例えば$k=3$の場合で,記録された数字が$(5,\ 1,\ 2)$,$(3,\ 5,\ 5)$あるいは$(5,\ 5,\ 5)$のとき,$X=5$となる).このとき,以下の問に答えよ.

(1)$n=4,\ k=3$とすると,$P(X=2)$はいくらになるか.
(2)$n=4,\ k=3$としたときの$X$の期待値を求めよ.
(3)$k=3$としたときの$X$の期待値を,$n$を用いて表せ.
(4)$\mathrm{A}$君は$k=1$として上の試行を行い,値$X_A$を得るものとする.$\mathrm{B}$君は$k=a \ $($a$は1以上の整数)として上の試行を行い,値$X_B$を得るものとする.このとき,$\displaystyle \lim_{n \to \infty}P(X_A \geqq X_B)$を求めよ.
電気通信大学 国立 電気通信大学 2010年 第2問
座標平面上を運動する動点P$(x,\ y)$が時刻$t$の関数として
\[ x=t \cos \alpha,\quad y=t \sin \alpha-t^2 \]
で与えられているとする.ただし,$\alpha$は$0 \leqq \alpha < 2\pi$を満たす定数とする.直線$y=x$を$\ell$とするとき,以下の問いに答えよ.

(1)時刻$t=0$における動点Pの速度$\overrightarrow{v}$とその大きさ$|\overrightarrow{v}|$を求めよ.
(2)Pが直線$\ell$上の点を通る時刻$t$をすべて求めよ.
(3)正の時刻においてPが$\ell$上の点を通るための$\alpha$の範囲を求めよ.

以下では,$\alpha$は(3)で求めた範囲にあるとする.

\mon[(4)] 正の時刻においてPが通る$\ell$上の点の$x$座標を求めよ.
\mon[(5)] (4)で求めた$\ell$上の点の$x$座標を$f(\alpha)$とし,$\alpha$を(3)で求めた範囲で変化させる.$f(\alpha)$の最大値,最小値を求め,それらを与える$\alpha$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第4問
関数$f(x)$を,$x \leqq 1$のとき$f(x)=x^2$と定め,$x>1$のとき$f(x)=2x-1$と定める.さらに,実数$t$に対して
\[ g(t) = \int_t^{t+3} f(x) \, dx \]
と定めるとき,次の問いに答えよ.

(1)$g(0)$を求めよ.
(2)$g(t)$を$t$の式で表せ.
(3)関数$g(t)$の$-3 \leqq t \leqq 3$における最大値,最小値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
新潟大学 国立 新潟大学 2010年 第1問
次の問いに答えよ.

(1)不等式$4 \log_4 x \leqq \log_2 (4-x) +1$を解け.
(2)(1)で求めた$x$の範囲において,関数$y=9^x-4 \cdot 3^x+10$の最大値,最小値とそのときの$x$の値をそれぞれ求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
次に答えよ.ただし,対数は自然対数とする.必要ならば,$1.09<\log 3<1.10$を用いてよい.

(1)すべての$x>0$に対して,不等式
\[ x-\frac{x^2}{2} < \log (1+x) \]
が成り立つことを示せ.
(2)関数$\displaystyle f(x)=x-\frac{x^2}{3}-\log (1+x)$の$0 \leqq x \leqq 2$における最大値,および最小値を求めよ.
(3)方程式$\displaystyle x-\frac{x^2}{3}=\log (1+x)$は$0<x<2$の範囲に解を1つだけもつことを示せ.
(4)(3)における解を$\alpha \ (0<\alpha<2)$とする.曲線$\displaystyle y=x-\frac{x^2}{3}$と曲線$y=\log (1+x)$で囲まれた図形($0 \leqq x \leqq \alpha$の部分)の面積を$S$とする.また,曲線$\displaystyle y=x-\frac{x^2}{3}$,$y=\log (1+x)$と直線$x=2$で囲まれた図形($\alpha \leqq x \leqq 2$の部分)の面積を$T$とする.$S$と$T$の大小を比較せよ.
新潟大学 国立 新潟大学 2010年 第5問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)(2)で2次関数がただ一通りに定まるとき,その2次関数の最大値を$X$とし,そうでないとき$X=0$とする.このとき,$X$の期待値を求めよ.
琉球大学 国立 琉球大学 2010年 第1問
次の問いに答えよ.

(1)$t$を実数とする.放物線$y=x(2-x)$上の点$(t,\ t(2-t))$における接線の方程式を求めよ.
(2)(1)で求めた直線と放物線$y=x(2-x)$および2直線$x=0,\ x=3$とで囲まれた図形の面積を$S(t)$とする.$0 \leqq t \leqq 2$における$S(t)$の最大値,最小値とそのときの$t$の値を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。