タグ「最大値」の検索結果

102ページ目:全1143問中1011問~1020問を表示)
愛知県立大学 公立 愛知県立大学 2011年 第3問
曲線$C_1:y=p \cos x$,$C_2:y=q \sin x$について,以下の問いに答えよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2},\ p>0,\ q>0$である.

(1)曲線$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$p,\ q$で表せ.
(2)曲線$C_1,\ C_2$と$x$軸で囲まれた部分の面積を$S$とするとき,$S$を$p,\ q$で表せ.
(3)$p,\ q$が$p^2+q^2=4$を満たすとき,(2)で求めた面積$S$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第3問
座標平面内において,楕円$\displaystyle x^2+\frac{y^2}{3}=1$の$x \geqq 0,\ y \geqq 0$の部分の曲線を$C$とする.$x_0>0,\ y_0>0$とし,曲線$C$上に点P$(x_0,\ y_0)$をとり,点Pにおける曲線$C$の法線を$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$と$x$軸との交点を$(x_1,\ 0)$とするとき,$x_1$を$x_0,\ y_0$を用いて表せ.
(2)$x_0=\cos \theta,\ y_0=\sqrt{3}\sin \theta$と表す.このとき,曲線$C$と直線$\ell$および$x$軸とで囲まれた部分の面積$S(\theta)$を$\theta$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,(2)で求めた面積$S(\theta)$の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
$xy$平面上において,媒介変数$t \ (0 \leqq t \leqq 2\pi)$によって$x=2(1+\cos t)\cos t,\ y=2(1+\cos t)\sin t$と表される下図の曲線について次の問いに答えよ.
(図は省略)

(1)$x$の最大値,最小値を求めよ.
(2)$\displaystyle \frac{dx}{dt}$を求めよ.
(3)この曲線で囲まれる図形を$x$軸のまわりに1回転してできる立体の体積を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第3問
$xy$平面上の原点O,定点A$(a,\ 0) \ (a>0)$,定点B$(0,\ b) \ (b>0)$を頂点とする直角三角形OABがある.直角三角形OAB内の点M$(p,\ q)$から辺OA,OB,ABに引いた垂線と各辺との交点をそれぞれE,F,Gとする.

(1)$L=\text{ME} \cdot \text{MF} \cdot \text{MG}$とおいたとき,$L$を$a,\ b,\ p,\ q$で表せ.
(2)$L$において,$q$を固定し,$p$を変数としたとき,$L$の最大値$L_1$を$a,\ b,\ q$で表せ.
(3)$L_1$において,$q$を変数としたとき,$L_1$の最大値$L_2$を$a,\ b$で表せ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第5問
$2$次関数$f(x)=x^2-2x+2$について,以下の問いに答えよ.

(1)$t$を実数とする.$t-1 \leqq x \leqq t$の範囲において,$f(x)$の最大値を$t$の関数の形で求めよ.
(2)$(1)$で求めた$t$の関数を$p(t)$とおく.$t$がすべての実数値をとって変化するとき,座標平面上の点$(t,\ p(t))$の軌跡を描け.
(3)$t$を実数とする.$t-1 \leqq x \leqq t$の範囲において,$f(x)$の最小値を$t$の関数の形で求めよ.
(4)$(3)$で求めた$t$の関数を$q(t)$とおく.$t$がすべての実数値をとって変化するとき,座標平面上の点$(t,\ q(t))$の軌跡を描け.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第6問
座標平面上の2点A$(-2,\ 0)$,B$(2,\ 0)$を端点とする線分ABと楕円の上半分$x^2+4y^2=4,\ y \geqq 0$に4つの頂点がある台形ABCDについて,以下の問いに答えよ.ただし,点Cは第1象限,点Dは第2象限に属しているとする.

(1)点Cの$x$座標を$\displaystyle 2\cos \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,台形ABCDの面積を$\theta$を用いて表せ.
(2)台形ABCDの面積の最大値を求めよ.また,そのときの点Cの$x$座標を求めよ.
会津大学 公立 会津大学 2011年 第3問
1個のサイコロを3回投げるとき,以下の問いに答えよ.

(1)出た目がすべて異なる確率を求めよ.
(2)出た目の和が5となる確率を求めよ.
(3)出た目の最大値が2となる確率を求めよ.
(4)出た目の積が60となる確率を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第3問
座標平面において原点を中心とする半径$1$の円を$C_1$とし,点$(1,\ 0)$を中心とする半径$3$の円を$C_2$とする.動点$\mathrm{P}$は$C_1$上を反時計回りに$1$秒間に$2$回転の速さで等速円運動をし,動点$\mathrm{Q}$は$C_2$上を反時計回りに$1$秒間に$1$回転の速さで等速円運動をしている.時刻$t=0$のとき,$\mathrm{P}$は$(0,\ 1)$にあり,$\mathrm{Q}$は$(4,\ 0)$にあるものとする.$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の$2$乗の最大値と最小値,およびそれらをとる$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
釧路公立大学 公立 釧路公立大学 2011年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さを,それぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表す.$\sin A:\sin B:\sin C=7:8:3$が成立しているとき,以下の各問に答えよ.

(1)$\cos A,\ \cos B,\ \cos C$の値の中で,最大値を求めよ.またそのときの,正接の値を求めよ.
(2)$\sin A,\ \sin B,\ \sin C$の値の中で,最大値を求めよ.
(3)$b=4$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{P}$とするとき,線分$\mathrm{AP}$の長さを求めよ.
(4)$(3)$のもとで,$\triangle \mathrm{ABC}$の外接円の半径と,内接円の半径を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。