タグ「最初」の検索結果

8ページ目:全139問中71問~80問を表示)
横浜国立大学 国立 横浜国立大学 2013年 第3問
1つの整数を表示する装置がある.最初に2013が表示されている.さいころを1回投げるたびに次の操作$(*)$を行う.

\mon[$(*)$] 表示されている整数をさいころの出た目の数で割った余り$r$を求め,装置に$r$を表示させる.

さいころを$n$回投げたとき,最後に装置に表示されている整数が0である確率を$a_n$,1である確率を$b_n$,3である確率を$c_n$とする.次の問いに答えよ.

(1)$a_1,\ b_1,\ c_1$を求めよ.
(2)$a_n,\ b_n,\ c_n$を$a_{n-1},\ b_{n-1},\ c_{n-1}$を用いて表せ.
(3)$a_n,\ b_n,\ c_n$を$n$の式で表せ.
横浜国立大学 国立 横浜国立大学 2013年 第4問
1つの整数を表示する装置がある.最初に2013が表示されている.さいころを1回投げるたびに次の操作$(*)$を行う.

\mon[$(*)$] 表示されている整数をさいころの出た目の数で割った余り$r$を求め,装置に$r$を表示させる.

さいころを$n$回投げたとき,最後に装置に表示されている整数が0である確率を$a_n$,1である確率を$b_n$,3である確率を$c_n$とする.次の問いに答えよ.

(1)$a_1,\ b_1,\ c_1$を求めよ.
(2)$a_n,\ b_n,\ c_n$を$a_{n-1},\ b_{n-1},\ c_{n-1}$を用いて表せ.
(3)$a_n,\ b_n,\ c_n$を$n$の式で表せ.
茨城大学 国立 茨城大学 2013年 第2問
$\mathrm{A}$,$\mathrm{B}$の$2$つの野球チームが戦い,先に$4$勝したチームを優勝とする.引き分けはないものとし,各試合で$\mathrm{A}$チームが$\mathrm{B}$チームに勝つ確率は$\displaystyle \frac{3}{5}$とする.次の各問に答えよ.

(1)$\mathrm{A}$チームが$4$勝$1$敗で優勝する確率を求めよ.
(2)$\mathrm{A}$チームが最初の$2$試合で負けてしまった.その後,$\mathrm{A}$チームが優勝する確率を求めよ.
(3)$4$試合が終わって$\mathrm{A}$チームの$1$勝$3$敗になった.その後,どちらかのチームの優勝が決定するまでの残り試合数の期待値を求めよ.
福井大学 国立 福井大学 2013年 第3問
さいころの目によって$x$軸上を移動する点$\mathrm{Q}$を考える.さいころを$1$回投げて$5$または$6$の目が出れば$\mathrm{Q}$は$x$軸上を正の向きに$1$だけ移動し,その他の目が出れば$\mathrm{Q}$は$x$軸上を負の向きに$1$だけ移動する.最初,$\mathrm{Q}$は$x$軸上の原点にあり,さいころを$n$回投げて$\mathrm{Q}$が$n$回移動したときの$\mathrm{Q}$の$x$座標を$X_n$とおく.整数$k$に対し,$X_n=k$となる確率を$p(n,\ k)$と表すとき,以下の問いに答えよ.

(1)$p(3,\ 3)$,$p(3,\ 2)$,$p(3,\ 1)$,$p(3,\ 0)$の値を求めよ.
(2)$X_3$の期待値$E$を求めよ.
(3)$p(n,\ 0)$を$n$を用いて表せ.
金沢大学 国立 金沢大学 2013年 第2問
座標平面上の点$\mathrm{P}$は,硬貨を$1$回投げて表が出れば$x$軸の正の方向に$2$,裏が出れば$y$軸の正の方向に$1$だけ進むことにする.最初,$\mathrm{P}$は原点にある.硬貨を$5$回投げた後の$\mathrm{P}$の到達点について,次の問いに答えよ.

(1)$\mathrm{P}$の到達点が$(10,\ 0)$となる確率を求めよ.また,$(6,\ 2)$となる確率を求めよ.
(2)$2$点$(10,\ 0)$,$(6,\ 2)$を通る直線$\ell$の方程式を求めよ.また,$\mathrm{P}$の到達点はすべて直線$\ell$上にあることを示せ.
(3)$(2)$で求めた直線$\ell$と原点との距離を求めよ.
(4)$\mathrm{P}$の到達点と原点との距離$d$が,$2 \sqrt{5}<d \leqq 5$となる確率を求めよ.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
千葉大学 国立 千葉大学 2013年 第8問
$r$を$1$より大きい実数とする.半径$1$の円$C$の周上に点$\mathrm{Q}$をとる.最初に円$C$の中心$\mathrm{P}$は座標平面の$(0,\ 1)$,点$\mathrm{Q}$は$(0,\ 2)$にあるものとし,円$C$が$x$軸に接しながら$x$軸の正の方向にすべることなく転がっていく.角$\theta$ラジアンだけ回転したとき,半直線$\mathrm{PQ}$上に$\mathrm{PR}=r$となる点$\mathrm{R}$をとる.$\theta$を$0$から$2\pi$まで動かしたときの$\mathrm{R}$の軌跡を考える.

(1)$\alpha,\ \beta$は$0 \leqq \alpha<\beta \leqq 2\pi$をみたし,$\theta=\alpha$のときの$\mathrm{R}$の座標と$\theta=\beta$のときの$\mathrm{R}$の座標とが一致するものとする.$\displaystyle t=\frac{\beta-\alpha}{2}$とおくとき,$r$を$t$を用いて表せ.
(2)(1)において,$\theta$を$\alpha$から$\beta$まで動かしたときの$\mathrm{R}$の軌跡によって囲まれた図形の面積を$S$とする.$S$を$t$を用いて表せ.
(3)$\displaystyle \lim_{r \to \infty} \frac{S}{r^2}$を求めよ.
東京大学 国立 東京大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人がいる.投げたときに表裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$のコインが$1$枚あり,最初は$\mathrm{A}$がそのコインを持っている.次の操作を繰り返す.

(i) $\mathrm{A}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{A}$に$1$点を与え,コインは$\mathrm{A}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{A}$はコインを$\mathrm{B}$に渡す.
(ii) $\mathrm{B}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{B}$に$1$点を与え,コインは$\mathrm{B}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{B}$はコインを$\mathrm{A}$に渡す.

そして$\mathrm{A}$,$\mathrm{B}$のいずれかが$2$点を獲得した時点で,$2$点を獲得した方の勝利とする.たとえば,コインが表,裏,表,表と出た場合,この時点では$\mathrm{A}$は$1$点,$\mathrm{B}$は$2$点を獲得しているので$\mathrm{B}$の勝利となる.

(1)$\mathrm{A}$,$\mathrm{B}$あわせてちょうど$n$回コインを投げ終えたときに$\mathrm{A}$の勝利となる確率$p(n)$を求めよ.
(2)$\displaystyle \sum_{n=1}^\infty p(n)$を求めよ.
東京大学 国立 東京大学 2013年 第4問
$\mathrm{A}$,$\mathrm{B}$の$2$人がいる.投げたときに表裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$のコインが$1$枚あり,最初は$\mathrm{A}$がそのコインを持っている.次の操作を繰り返す.

(i) $\mathrm{A}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{A}$に$1$点を与え,コインは$\mathrm{A}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{A}$はコインを$\mathrm{B}$に渡す.
(ii) $\mathrm{B}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{B}$に$1$点を与え,コインは$\mathrm{B}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{B}$はコインを$\mathrm{A}$に渡す.

そして$\mathrm{A}$,$\mathrm{B}$のいずれかが$2$点を獲得した時点で,$2$点を獲得した方の勝利とする.たとえば,コインが表,裏,表,表と出た場合,この時点では$\mathrm{A}$は$1$点,$\mathrm{B}$は$2$点を獲得しているので$\mathrm{B}$の勝利となる. \\
$\mathrm{A}$,$\mathrm{B}$あわせてちょうど$n$回コインを投げ終えたときに$\mathrm{A}$の勝利となる確率$p(n)$を求めよ.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。