タグ「最初」の検索結果

14ページ目:全139問中131問~140問を表示)
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
横浜国立大学 国立 横浜国立大学 2010年 第2問
1個のいびつなさいころがある.$1,\ 2,\ 3,\ 4$の目が出る確率はそれぞれ$\displaystyle \frac{p}{2}$であり,$5,\ 6$の目が出る確率はそれぞれ$\displaystyle \frac{1-2p}{2}$である.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.このさいころを投げて,$xy$平面上の点Qを次のように動かす.

\mon[(i)] 1または2の目が出たときには,Qを$x$軸の正の方向に1だけ動かす.
\mon[(ii)] 3または4の目が出たときには,Qを$y$軸の正の方向に1だけ動かす.
\mon[(iii)] 5または6の目が出たときには,Qを動かさない.

Qは最初原点$(0,\ 0)$にある.このさいころを$(n+1)$回投げ,Qが通った点(原点およびQの最終位置の点を含む)の集合を$S$とする.ただし,$n$は自然数とする.次の問いに答えよ.

(1)さいころを$(n+1)$回投げたとき,$S$が点$(1,\ n-1)$を含む確率を求めよ.
(2)さいころを$(n+1)$回投げたとき,$S$が領域$x+y<n$に含まれる確率を求めよ.
(3)さいころを$(n+1)$回投げたとき,$S$が点$(k,\ n-k)$を含むならば得点$2^k$点$(k=0,\ 1,\ \cdots,\ n)$が与えられ,$S$が領域$x+y<n$に含まれるならば得点0点が与えられるとする.得点の期待値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2010年 第4問
図に示す正六角形$\mathrm{ABCDEF}$がある.点$\mathrm{P}$は最初頂点$\mathrm{A}$にあって, \\
サイコロを投げて,$1$または$2$の目が出たとき,点$\mathrm{P}$は右まわり \\
に一つ隣の頂点$\mathrm{B}$に移動する.一方,$3,\ 4,\ 5,\ 6$のいずれかの目 \\
が出たとき,点$\mathrm{P}$は左まわりに二つ隣の頂点$\mathrm{E}$に移動する. \\
サイコロを$1$度投げて点$\mathrm{P}$が移動するのを$1$試行とし,この試行 \\
を指定された回数だけ繰り返す.以下の問いに答えよ.
\img{410_1079_2010_2}{45}


(1)最初の試行後の点$\mathrm{P}$の位置を$\mathrm{P}_1$,続く$2$回目の試行を行った後の点$\mathrm{P}$の位置を$\mathrm{P}_2$とする.このとき,$\mathrm{A}$,$\mathrm{P}_1$,$\mathrm{P}_2$の$3$個の点を頂点とする三角形が正三角形になる確率を求めよ.
(2)$2$回の試行後に点$\mathrm{P}$が頂点$\mathrm{C}$にある確率を求めよ.
(3)$6$回の試行後に点$\mathrm{P}$が頂点$\mathrm{D}$にない確率を求めよ.
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
鳥取大学 国立 鳥取大学 2010年 第3問
次の問いに答えよ.

(1)2人乗りの車を持っているA君は,B君,C君とP地点からQ地点へ出かけることにした.B君はA君の車に乗り,C君は歩くこととし,3人同時にP地点を出発した.しばらくしてB君は車から降りて歩くこととし,A君はC君を迎えに引き返し,C君を乗せてQ地点へ向かうと,ちょうどQ地点でB君と一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは2人とも毎時$p\;$km \ ($v>p$)とする.乗り降りに要する時間は無視する.

(2)P地点からQ地点までの平均の速さを求めよ.
(3)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.

(4)2人乗りの車を持っているA君は,B$_1$君,B$_2$君,$\cdots$,B$_n$君とP地点からQ地点へ出かけることにした.最初B$_1$君はA君の車に乗り,残りの$(n-1)$人は歩くこととし,全員同時にP地点を出発した.しばらくしてB$_1$君は車から降りて歩くこととし,A君はB$_2$君を迎えに引き返し,B$_2$君を乗せてQ地点へ向かう.途中,歩いているB$_1$君と出会ったところでB$_2$君を降ろし,B$_3$君を迎えに引き返す.これを繰り返して最後のB$_n$君を乗せてQ地点へ向かうと,ちょうどQ地点で全員が一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは全員同じで毎時$p\;$km$(v>p)$とする.乗り降りに要する時間は無視する.「$n$は,2以上の整数とする.」

(5)P地点からQ地点までの平均の速さを求めよ.
(6)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
高知工科大学 公立 高知工科大学 2010年 第4問
$1,\ 2,\ 3$の$3$種類の数字を使ってできる正の整数を小さい方から順に並べた列を$(S)$とする:
\[ (S):\qquad 1,\ 2,\ 3,\ 11,\ 12,\ 13,\ 21,\ 22,\ 23,\ 31,\ \cdots \]
さらに,この列の区切りをなくして,すべての数字を一列に並べたものを$(T)$とする:
\[ (T):\qquad 12311121321222331 \cdots \]
次の各問に答えよ.

(1)$(S)$において,$12$は$5$番目の整数である.$312$は何番目の整数になるか求めよ.
(2)$(S)$において,$2010$番目の整数を求めよ.
(3)$(T)$において,初めて$2$が$3$個連続して並ぶ部分の最初の$2$は$12$番目の数字である.初めて$1$が$2n+1$個連続して並ぶ部分の最初の$1$は何番目の数字になるか求めよ.ただし,$n$は自然数とする.
和歌山県立医科大学 公立 和歌山県立医科大学 2010年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかの状態をとる粒子があり,その状態は次のように変化していく.

\mon[(イ)] 状態$\mathrm{A}$であるとき,$1$秒後に状態$\mathrm{A}$,状態$\mathrm{B}$である確率はともに$\displaystyle \frac{1}{2}$である.
\mon[(ロ)] 状態$\mathrm{B}$であるとき,$1$秒後に状態$\mathrm{B}$である確率は$\displaystyle \frac{1}{3}$であり,状態$\mathrm{C}$である確率は$\displaystyle \frac{2}{3}$である.
\mon[(ハ)] 状態$\mathrm{C}$となったときは,その後は変化なく$\mathrm{C}$の状態が続く.

粒子は最初状態$\mathrm{A}$であるとし,$n$秒後に状態$\mathrm{A}$,状態$\mathrm{B}$,状態$\mathrm{C}$である確率をそれぞれ$P_n,\ Q_n,\ R_n$とする.次の問いに答えよ.ただし,$m,\ n$は自然数とする.

(1)$R_n$を求めよ.
(2)異なる$m,\ n$で$Q_m=Q_n$となることはあるか.
(3)$P_m=Q_n$となることはあるか.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。