タグ「最初」の検索結果

13ページ目:全139問中121問~130問を表示)
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第4問
表と裏が同じ確率$\displaystyle \frac{1}{2}$で出る$2$つの硬貨$\mathrm{A}$,$\mathrm{B}$がある.$xy$平面上の点$\mathrm{P}$がこの$2$つの硬貨$\mathrm{A}$,$\mathrm{B}$を同時に投げた結果によって移動する.点$\mathrm{P}$は,硬貨$\mathrm{A}$を投げて表が出たら$x$軸方向に$+1$移動し,裏が出たら$x$軸方向に$-1$移動する.また,硬貨$\mathrm{B}$を投げて表が出たら$y$軸方向に$+1$移動し,裏が出たら$y$軸方向に$-1$移動する.点$\mathrm{P}$は最初に原点にあるものとし,このような操作をくり返すとき,次の問に答えよ.

(1)点$\mathrm{P}$が$4$回目の操作で初めて原点にもどる確率を求めよ.
(2)点$\mathrm{P}$が$6$回目の操作で直線$y=4-x$の上にある確率を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
下図のように$9$個の点$\mathrm{A}$,$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{C}_1$,$\mathrm{C}_2$,$\mathrm{C}_3$,$\mathrm{C}_4$とそれらを結ぶ$16$本の線分からなる図形がある.この図形上にある物体$\mathrm{U}$は,毎秒ひとつの点から線分で結ばれている別の点へ移動する.ただし$\mathrm{U}$は線分で結ばれているどの点にも等確率で移動するとする.最初に点$\mathrm{A}$にあった物体$\mathrm{U}$が,$n$秒後に点$\mathrm{A}$にある確率を$a_n$とすると,$a_0=1$,$a_1=0$である.このとき$a_n (n \geqq 2)$を求めよ.
(図は省略)
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
明治大学 私立 明治大学 2011年 第2問
次の各設問の$[9]$から$[12]$までの空欄を埋めよ.$[ ]$についても答えよ.
数列
\[ 1 \cdot1,\ 1\cdot 3,\ 2\cdot 5,\ 2\cdot 7,\ 2\cdot 9,\ 2\cdot 11,\ 3\cdot 13,\ 3\cdot 15,\ 3\cdot 17,\ 3\cdot 19,\ 3\cdot 21,\ 3\cdot 23,\ 4\cdot 25,\ \cdots \]
がある.ただし$\cdot$は積を表し,例えば第8項は$3\cdot 15 = 45$の意味である.この数列を
\[ 1 \cdot1,\ 1\cdot 3\ |\ 2\cdot 5,\ 2\cdot 7,\ 2\cdot 9,\ 2\cdot 11\ |\ 3\cdot 13,\ 3\cdot 15,\ 3\cdot 17,\ 3\cdot 19,\ 3\cdot 21,\ 3\cdot 23\ |\ 4\cdot 25,\ \cdots \]
\qquad 第$1$群 \qquad\qquad 第$2$群 \qquad\qquad\qquad\qquad\qquad 第$3$群 第$4$群 \\
のように第$m$群に$2m$個の項を含むように分ける.

(1)第$m$群の最初の項はもとの数列の$[9]$番目の項である.また,この項は$m$を用いて$[10]$と表すことができる.
(2)初めて積が$2011$を越える項は第$[11]$群の$[12]$番目の項である.また,第$[11]$群の全ての項の和は$[ ]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第6問
数列$\{a_n\}$は,初項1,公差$\displaystyle \frac{5}{2}$の等差数列で,数列$\{b_n\}$は,初項2,公差$\displaystyle \frac{7}{4}$の等差数列である.このとき,次の設問に答えよ.

(1)ある$a_n$とある$b_m$が同じ値をとるものを小さい順に$c_1,\ c_2,\ c_3,\ \cdots$とする.このとき,最初からの3項$c_1,\ c_2,\ c_3$の値を求めよ.
(2)一般項$c_n$を$n$の式で表せ.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$m$を実数とするとき,$2$つの$2$次方程式
$2x^2+8x+2m=0$ $\cdots\cdots①$
$x^2+mx+2m-4=0$ $\cdots\cdots②$
が共通の解をもつのは,$m=[$*$]$または$m=[$**$]$のときである.ただし,$[$*$]>[$**$]$とする.$m=[$*$]$のとき,$①$と$②$の共通の解は$x=[ ]$であり,$m=[$**$]$のとき,$①$と$②$の共通の解は$x=[ ]$である.
(2)座標平面上に点$\mathrm{P}$がある.サイコロを投げて,偶数の目がでたら$\mathrm{P}$は$x$軸の正の方向に$1$動き,$1$または$5$の目がでたら$y$軸の正の方向に$1$動き,$3$の目がでたときには動かないとする.最初$\mathrm{P}$が原点にあったとする.サイコロを$5$回投げた後,$\mathrm{P}$が座標$(4,\ 1)$にある確率は$[ ]$,$(3,\ 1)$にある確率は$[ ]$,$(2,\ 1)$にある確率は$[ ]$である.また,$n$を$3$以上の自然数とし,サイコロを$n$回投げた後,$\mathrm{P}$が$(n-3,\ 1)$にある確率は$[ ]$である.
首都大学東京 公立 首都大学東京 2011年 第3問
以下の問いに答えなさい.

(1)赤,白,黒の玉がそれぞれ$3$個ずつあり,一列に並べるものとする.合計$9$個の玉の並べ方は何通りあるか求めなさい.なお,同じ色の玉は区別しないものとする.
(2)(1)の並べ方のうちで,先頭の$3$個の玉が同じ色であるか,末尾の$3$個の玉が同じ色であるか,少なくとも一方が成り立つ並べ方は何通りあるか求めなさい.
(3)空間において座標$(x,\ y,\ z)$にある点$\mathrm{P}$を$1$回の操作で$(x+1,\ y,\ z)$,$(x,\ y+1,\ z)$,$(x,\ y,\ z+1)$のいずれかを選んでその座標に移動させる.最初に$(0,\ 0,\ 0)$にある点$\mathrm{P}$を,$9$回の操作で$(3,\ 3,\ 3)$に移動させる選び方のうち,$(3,\ 0,\ 0)$,$(0,\ 3,\ 0)$,$(0,\ 0,\ 3)$,$(3,\ 3,\ 0)$,$(3,\ 0,\ 3)$,$(0,\ 3,\ 3)$のいずれも経由しないものは何通りあるか求めなさい.
神戸大学 国立 神戸大学 2010年 第4問
$N$を自然数とする.赤いカード2枚と白いカード$N$枚が入っている袋から無作為にカードを1枚ずつ取り出して並べていくゲームをする.2枚目の赤いカードが取り出された時点でゲームは終了する.赤いカードが最初に取り出されるまでに取り出された白いカードの枚数を$X$とし,ゲーム終了時までに取り出された白いカードの総数を$Y$とする.このとき,以下の問に答えよ.

(1)$n=0,\ 1,\ \cdots,\ N$に対して,$X=n$となる確率$p_n$を求めよ.
(2)$X$の期待値を求めよ.
(3)$n=0,\ 1,\ \cdots,\ N$に対して,$Y=n$となる確率$q_n$を求めよ.
北海道大学 国立 北海道大学 2010年 第3問
$\displaystyle a_n = \frac{1}{n(n+1)}$を第$n$項とする数列を,次のように奇数個ずつの群に分ける.
\begin{eqnarray}
& & \{a_1\},\quad \{a_2,\ a_3,\ a_4 \},\quad \{a_5,\ a_6,\ a_7,\ a_8,\ a_9\},\ \cdots \quad \nonumber \\
& & \text{第$1$群} \qquad \ \text{第$2$群} \qquad \qquad \quad \ \text{第$3$群} \nonumber
\end{eqnarray}
$k$を自然数として,以下の問いに答えよ.

(1)第$k$群の最初の項を求めよ.
(2)第$k$群に含まれるすべての項の和$S_k$を求めよ.
(3)$\displaystyle (k^2+1)S_k \leqq \frac{1}{100}$を満たす最小の自然数$k$を求めよ.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。