タグ「最低」の検索結果

1ページ目:全11問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第2問
ボタンを押すと「あたり」か「はずれ」のいずれかが表示される装置がある.「あたり」の表示される確率は毎回同じであるとする.この装置のボタンを$20$回押したとき,$1$回以上「あたり」の出る確率は$36 \, \%$である.$1$回以上「あたり」の出る確率が$90 \, \%$以上となるためには,この装置のボタンを最低何回押せばよいか.必要なら$0.3010<\log_{10}2<0.3011$を用いてよい.
明治大学 私立 明治大学 2016年 第2問
次の設問の$[ ]$に適当な数を入れなさい.

ある種の電磁波は遮へい板を$1$枚通過するごとに電磁波の強さが$\displaystyle \frac{4}{5}$になる.この電磁波の強さを$\displaystyle \frac{1}{30}$以下にするためには,遮へい板が最低$[ ]$枚必要となる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
中央大学 私立 中央大学 2015年 第2問
ある鉄道会社では平成$26$年$3$月まで,最低運賃$130$円から$1000$円まで$10$円きざみで運賃が設定されていた.この年$4$月からの消費税率の引き上げに伴い,次のように運賃を改定することにした.

\mon[$①$] $\mathrm{IC}$カードを利用する場合
改定前の運賃に$108/105$を乗じ,$1$円未満の端数を切り捨て,$1$円単位にした額を新運賃とする.
\mon[$②$] 券売機等で発売する切符を利用する場合
改定前の運賃に$108/105$を乗じ,$10$円未満の端数を切り上げ,$10$円単位とした額を新運賃とする.

以下の問いに答えよ.

(1)切符を利用する場合,$20$円の値上げとなるような改定前運賃の範囲を求めよ.
(2)運賃改定後,$\mathrm{IC}$カードを利用した場合と,切符を利用した場合で運賃の差が最大となるような改定前運賃をすべて求めよ.
(3)切符を利用する場合の規則を,$10$円未満の端数を切り上げるのではなく,四捨五入する計算方法に変えたとする.このとき,値上げにならない運賃の範囲を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
高知大学 国立 高知大学 2014年 第3問
丸いピザを包丁で,まっすぐに切る.$1$回切るとどんな切り方をしてもピザは$2$片に分割される.$2$回だと$3$片か$4$片に分割される.このとき,$n$回切ったときの最大分割数を$a_n$とおく.例えば$a_1=2$,$a_2=4$,$a_3=7$である.次の問いに答えよ.

(1)$a_3 \geqq 7$,$a_4 \geqq 11$,$a_5 \geqq 16$であることを図により確かめよ.
(2)$n$回目に新しく切ったとき,その切り口はいくつかの線分に分かれる.その線分の数を$p_n$とおく.上手に切れば
\[ a_{n+1}=a_n+p_{n+1} \]
となる.このときの$p_{n+1}$を求めよ.
(3)$a_n$を求めよ.
(4)$100$片以上に分割するには最低何回切ればよいか.
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
日本福祉大学 私立 日本福祉大学 2013年 第4問
$3$つの組$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\mathrm{A}$組は$6$人,$\mathrm{B}$組は$5$人,$\mathrm{C}$組は$4$人からなる.これら$3$組の合計$15$人の中から,くじ引きで無作為に$4$人の委員を選ぶとき,以下の問いに答えよ.

(1)$4$人の委員がすべて$\mathrm{A}$組から選ばれる確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれの組からも最低$1$人は選ばれる確率を求めよ.
北海道薬科大学 私立 北海道薬科大学 2012年 第2問
次の各設問に答えよ.

(1)空間内に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 4)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面上に原点$\mathrm{O}$から垂線を下ろし,この平面との交点を$\mathrm{P}$とする.
\[ \overrightarrow{\mathrm{OP}}=a \overrightarrow{\mathrm{OA}}+b \overrightarrow{\mathrm{OB}}+c \overrightarrow{\mathrm{OC}} \quad (a,\ b,\ c \text{は実数}) \]
とすると$a+b+c=[ア]$となる.また

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=[イウ] a+[エ] b=[オ]$

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AC}}=[カキ] a+[クケ] c=[コ]$

となる.よって,点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[サ]}{[シ]},\ \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right)$となる.
(2)$4$個のさいころを同時に投げるとき,出た目の積が偶数になる確率は$\displaystyle \frac{[チツ]}{[テト]}$である.また,出た目の積が偶数になる確率が$0.994$以上になるには,同時に投げるさいころの数は最低$[ナ]$個必要である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
小樽商科大学 国立 小樽商科大学 2010年 第3問
次の[ ]の中を適当に補いなさい.

(1)$4 \cos 15^\circ(1-\sin^2 15^\circ-\sin 15^\circ)-3(\sin 15^\circ+1) \cos 15^\circ=[ ]$.
(2)100人の学生を対象に100点満点の試験を行った結果,平均点が75点,最高点が95点,最低点が25点であった.平均点以上の学生数を$M$とし,$M$の最小値を求めると[ ].ただし,点数は全て自然数とする.
(3)関数$y=x^3-3x$のグラフに,直線$y=-1$上のある点から傾きがそれぞれ$k,\ -k \ (k>0)$の2本の接線が引けるとき,その2本の接線の接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.このとき,$A=\alpha^2+\beta^2,\ B=\alpha^3+\beta^3$の値を計算すると$(A,\ B)=[ ]$.
日本福祉大学 私立 日本福祉大学 2010年 第1問
テーマパークで午前$9$時から入場券を$1$つの窓口で売りはじめ,午前$9$時の時点で窓口の客を除いて$100$人の行列があった.その後,一定の間隔で毎分$20$人の来客があり,午前$9$時$20$分には行列が$300$人となった.ただし,客$1$人あたりの窓口での入場券購入時間は一定とし,行列には窓口で入場券を買っている客は含まないものとする.

(1)$1$つの窓口で$1$分間に入場券を購入できる人数を求めよ.
(2)午前$9$時$20$分から窓口を増やして,午前$10$時までに行列を無くすためには,窓口は最低いくつ必要か求めよ.
スポンサーリンク

「最低」とは・・・

 まだこのタグの説明は執筆されていません。