タグ「曲線」の検索結果

91ページ目:全1320問中901問~910問を表示)
茨城大学 国立 茨城大学 2012年 第3問
$a$を実数の定数として,$f(x)=x(x-a)^2$とおく.以下の各問に答えよ.

(1)関数$y=f(x)$の増減と極値を調べ,そのグラフをかけ.
(2)$a \neq 0$とする.曲線$y=f(x)$と$x$軸で囲まれた図形の面積$S(a)$を求めよ.さらに,$\displaystyle S(a)=\frac{1}{3}$となる$a$の値をすべて求めよ.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
東京農工大学 国立 東京農工大学 2012年 第3問
区間$1 \leqq x \leqq 4$で定められた関数$\displaystyle f(x)=\sqrt{4x-x^2},\ g(x)=\sqrt{x \log \frac{4}{x}}$について,次の問いに答えよ.ただし対数は自然対数とする.

(1)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた部分を,$x$軸の周りに1回転させてできる回転体の体積$V$を求めよ.
(2)区間$1 \leqq x \leqq 4$において$\{f(x)\}^2-\{g(x)\}^2 \geqq 0$が成り立つことを示せ.
(3)2つの曲線$y=f(x),\ y=g(x)$と直線$x=1$で囲まれた部分を$D$とおく.$D$を$x$軸の周りに1回転させてできる回転体の体積$W$を求めよ.
電気通信大学 国立 電気通信大学 2012年 第1問
関数$\displaystyle f(x)=\frac{1}{x^2+1}$に対して,$xy$平面上の曲線$C:y=f(x)$を考える.このとき,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)曲線$C$の第$1$象限にある変曲点$\mathrm{P}$の座標を求めよ.
(3)変曲点$\mathrm{P}$における曲線$C$の接線$\ell$の方程式を求めよ.
(4)$\displaystyle x=\tan \theta \ \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とおく.このとき,不定積分
\[ I=\int \frac{dx}{x^2+1} \]
を$\theta$を用いて表せ.なお,不定積分の計算においては積分定数を省略してもよい.
(5)曲線$C$と接線$\ell$および$y$軸とで囲まれる部分の面積$S$を求めよ.
福井大学 国立 福井大学 2012年 第4問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における法線を$\ell$とし,$\ell$に関して点$(a,\ 0)$と対称な点を$\mathrm{B}$,直線$\mathrm{AB}$と$y$軸との交点を$\mathrm{P}$とする.点$\mathrm{P}$の$y$座標を$f(a)$とおくとき,以下の問いに答えよ.

(1)$f(a)$を$a$を用いて表せ.
(2)$a$が実数全体を動くとき,$f(a)$の最大値とそのときの$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,曲線$C$,$y$軸と線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第1問
$k$は正の実数とする.$xy$平面において,$x$軸および2つの曲線
\[ C_1:y=k \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=\frac{1}{k}\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
で囲まれた図形の面積を$S(k)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\cos \alpha$および$\sin \alpha$を$k$を用いて表せ.
(2)$S(k)$を$k$を用いて表せ.
(3)$k$が$k>0$の範囲を動くときの$S(k)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第2問
$0<a \leqq 1$とする.このとき,次の問に答えよ.

(1)曲線$y=-x^2+1$と曲線$y=-(x-a)^2+1$の交点の座標を求めよ.
(2)$x$軸,$y$軸および曲線$y=-x^2+1 \ (x \geqq 0)$で囲まれた図形を$A$とし,$x$軸,直線$x=a$および曲線$y=-(x-a)^2+1 \ (x \leqq a)$で囲まれた図形を$B$とする.このとき,$A$と$B$の共通部分の面積$S(a)$を求めよ.
(3)$S(a)=S(1)$を満たす$a$の値を求めよ.ただし$0<a<1$とする.
(4)$S(a)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。