タグ「曲線」の検索結果

89ページ目:全1320問中881問~890問を表示)
群馬大学 国立 群馬大学 2012年 第1問
$a$は定数で,$0<a<e,\ a \neq 1$とする.$2$曲線$y=a^x,\ y=e^x$と直線$y=a$で囲まれた図形の面積を求めよ.ただし,$e$は自然対数の底である.
群馬大学 国立 群馬大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点A$\displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点Aを通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
群馬大学 国立 群馬大学 2012年 第1問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点$\mathrm{A} \displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点$\mathrm{A}$を通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
群馬大学 国立 群馬大学 2012年 第5問
$a$は定数で$a<3$とし,$f(x)=x^2-2ax+4a,\ g(x)=-x^2+6x-2a$とする.このとき以下の問いに答えよ.

(1)$2$曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を求めよ.
(2)$2$曲線$y=f(x)$と$y=g(x)$で囲まれた図形の面積が$9$となるときの$a$の値を求めよ.
香川大学 国立 香川大学 2012年 第3問
曲線$C:y=x \sin x$について,次の問に答えよ.

(1)$C$の接線のうち,原点を通る接線の方程式をすべて求めよ.
(2)直線$\displaystyle y=\frac{1}{2}x$と$C$との交点のうち,第1象限にあるものを$x$座標の小さい方から順にP$_1$,P$_2$,P$_3$,$\cdots$とする.線分P$_{2n-1}$P$_{2n}$と$C$で囲まれた図形の面積$S_n$を求めよ.
(3)点Q$_n \displaystyle \left( \frac{\pi}{2}+2(n-1)\pi,\ \frac{\pi}{2}+2(n-1)\pi \right)$に対して,$\triangle$P$_{2n-1}$P$_{2n}$Q$_n$の面積を$T_n$とする.このとき,$n$によらずに$\displaystyle \frac{S_n}{T_n}$が一定であることを示せ.
三重大学 国立 三重大学 2012年 第4問
媒介変数$\theta$を用いて$\displaystyle x=2\cos \theta,\ y=3\sin \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$と表される曲線がある.

(1)この曲線について$\theta$を消去して,$x,\ y$の方程式を求め,その概形をかけ.
(2)曲線上の点P$(2\cos \theta,\ 3\sin \theta)$での接線の方程式を求めよ.
(3)(2)で求めた接線と$x$軸,$y$軸とで作られる三角形の面積$S$を$\theta$の関数として表せ.
三重大学 国立 三重大学 2012年 第5問
$h$を$0<h<1$を満たす実数とし,
\[ f(x)=\bigg| x^2-\frac{2}{h}x \bigg| +2x+1,\quad g(x)=- \bigg| x^2-\frac{2}{h}x \bigg| +2x+1 \]
とする.

(1)2つの曲線$y=f(x)$と$y=g(x)$で囲まれる図形の面積$S(h)$を求めよ.
(2)(1)で定めた図形を含む,各辺が$x$軸または$y$軸に平行であるような長方形のうち,面積が最小となるものの面積を$T(h)$とする.$h$が0に限りなく近づくとき,$\displaystyle \frac{T(h)}{S(h)}$の極限値を求めよ.
三重大学 国立 三重大学 2012年 第4問
$h$を$0<h<1$を満たす実数とし,
\[ f(x)=x^2+2 \biggl( 1-\frac{1}{h} \biggr) x +1,\quad g(x)=-x^2+2 \biggl( 1+\frac{1}{h} \biggr) x+1 \]
とする.

(1)2つの曲線$y=f(x)$と$y=g(x)$で囲まれる図形の面積$S(h)$を求めよ.
(2)(1)で定めた図形を含む,各辺が$x$軸または$y$軸に平行であるような長方形のうち,面積が最小となるものの面積を$T(h)$とする.$h$が0に限りなく近づくとき,$\displaystyle \frac{T(h)}{S(h)}$の極限値を求めよ.
徳島大学 国立 徳島大学 2012年 第1問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。