タグ「曲線」の検索結果

83ページ目:全1320問中821問~830問を表示)
富山県立大学 公立 富山県立大学 2013年 第3問
$x \geqq 0$とする.関数$f(x)=e^{-2x^3}$,$g(x)=xe^{-x^3}$について,次の問いに答えよ.ただし,$\displaystyle \lim_{x \to \infty}g(x)=0$は証明なしに用いてよい.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=g(x)$の増減,極値および変曲点を調べて,そのグラフの概形をかけ.
(3)$a \geqq 0$とし,曲線$y=g(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を$V(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty}e^{2a^3}V(a)$を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
曲線$C:y=|x(x-2)|$と直線$\ell:y=kx$($k$は定数)が原点$\mathrm{O}$以外に$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.ただし,点$\mathrm{B}$の$x$座標は点$\mathrm{A}$の$x$座標よりも大きいとする.また,点$\mathrm{B}$を通り,点$\mathrm{B}$とも原点$\mathrm{O}$とも異なる点$\mathrm{E}$において曲線$C$と接する直線を$m$とする.以下の問いに答えよ.

(1)定数$k$の値の範囲を求めよ.
(2)直線$m$と$y$軸との交点を$\mathrm{F}$とする.三角形$\mathrm{FOE}$は曲線$C$によって二つの図形に分割されている.それらの二つの図形の面積の比を求めよ.
(3)$k=1$のとき,点$\mathrm{E}$の座標を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第3問
$a$を正の定数とし,$f(x)=ae^{-ax}$とする.ただし,$e$を自然対数の底とする.原点を$\mathrm{O}$とし,曲線$y=f(x)$上の点$\mathrm{P}(s,\ f(s))$における接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,以下の設問に答えよ.各設問とも,解答とともに導出過程も記述せよ.

(1)接線$\ell$の方程式と$2$点$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
(2)曲線$y=f(x)$上の点$(1,\ f(1))$における接線と$x$軸,および直線$x=1$で囲まれた部分の面積を$S_1$とする.また,曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=t$で囲まれた部分の面積を$S_2$とする.ただし,$t>1$とする.このとき,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.
(3)$s$の値が$s \geqq 0$の範囲で変化するとき,三角形$\mathrm{ROQ}$の面積$T(s)$の最大値とそのときの$s$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第10問
曲線$y=\log_e (x+1)-1$と$x$軸および$y$軸で囲まれた図形を,$y$軸のまわりに$1$回転してできる立体の体積を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第14問
曲線$y=|x^2-4x+3|$と直線$y=ax$が相異なる$3$点で交わるとき,$a$の値を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
京都府立大学 公立 京都府立大学 2013年 第4問
$x \geqq 0$とする.関数$f(x)=-x^3+x$と関数$g(x)=x^3-x^2$がある.$xy$平面上に曲線$C_1:y=f(x)$および曲線$C_2:y=g(x)$を定めるとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(1,\ 0)$における曲線$C_1$の接線の方程式を求めよ.
(2)$(1)$で得られた曲線$C_1$の接線と曲線$C_2$の接線が直交するとき,曲線$C_2$の接線の方程式を求めよ.
(3)$0 \leqq x \leqq 1$において,$f(x) \geqq g(x)$が成り立つことを示せ.
(4)原点を通り,曲線$C_1$と曲線$C_2$とで囲まれる図形の面積を二等分する直線の方程式を求めよ.
京都大学 国立 京都大学 2012年 第1問
次の各問に答えよ.

(1)$2$つの曲線$y=x^4$と$y=x^2+2$とによって囲まれる図形の面積を求めよ.
(2)$n$を$3$以上の整数とする.$1$から$n$までの番号をつけた$n$枚の札の組が$2$つある.これら$2n$枚の札をよく混ぜ合わせて,札を$1$枚ずつ$3$回取り出し,取り出した順にその番号を$X_1,\ X_2,\ X_3$とする.$X_1<X_2<X_3$となる確率を求めよ.ただし一度取り出した札は元に戻さないものとする.
名古屋大学 国立 名古屋大学 2012年 第1問
$a$を正の定数とし,$xy$平面上の曲線$C$の方程式を$y=x^3-a^2x$とする.

(1)$C$上の点A$(t,\ t^3-a^2t)$における$C$の接線を$\ell$とする.$\ell$と$C$で囲まれた図形の面積$S(t)$を求めよ.ただし,$t$は0でないとする.
(2)$b$を実数とする.$C$の接線のうち$xy$平面上の点B$(2a,\ b)$を通るものの本数を求めよ.
(3)$C$の接線のうち点B$(2a,\ b)$を通るものが2本のみの場合を考え,それらの接線を$\ell_1,\ \ell_2$とする.ただし,$\ell_1$と$\ell_2$はどちらも原点$(0,\ 0)$を通らないとする.$\ell_1$と$C$で囲まれた図形の面積を$S_1$とし,$\ell_2$と$C$で囲まれた図形の面積を$S_2$とする.$S_1 \geqq S_2$として,$\displaystyle\frac{S_1}{S_2}$の値を求めよ.
大阪大学 国立 大阪大学 2012年 第1問
$a>0$とする.$C_1$を曲線$\displaystyle x^2+\frac{y^2}{a^2}=1$,$C_2$を直線$y=2ax-3a$とする.このとき,以下の問いに答えよ.

(1)点Pが$C_1$上を動き,点Qが$C_2$上を動くとき,線分PQの長さの最小値を$f(a)$とする.$f(a)$を$a$を用いて表せ.
(2)極限値$\displaystyle\lim_{a \to \infty}f(a)$を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。