タグ「曲線」の検索結果

80ページ目:全1320問中791問~800問を表示)
早稲田大学 私立 早稲田大学 2013年 第2問
座標平面上の$3$点を$\mathrm{A}(0,\ 6)$,$\displaystyle \mathrm{B} \left( -\frac{6}{5},\ 0 \right)$,$\mathrm{C}(6,\ 0)$とする.$2$つの半直線$\mathrm{AB}$,$\mathrm{AC}$と接する$2$次曲線を
\[ y=ax^2+bx+c \]
とし,$a$を$c$で表すと,$a=[ク]$である.

この$2$次曲線のうち点$(4,\ 1)$を通る曲線は$2$つある.このうち$y$切片の小さい方の$2$次曲線は
\[ y=[ケ]x^2+[コ]x-[サ] \]
であり,この曲線と$x$軸で囲まれる部分の面積は$[シ]$である.
早稲田大学 私立 早稲田大学 2013年 第1問
次の$[ ]$にあてはまる数または数式を記入せよ.

(1)$a,\ b$は定数で,$x$についての整式$x^3+ax+b$は${(x+1)}^2$で割り切れるとする.このとき,$a=[ ]$,$b=[ ]$である.
(2)$5$個の自然数の組$(a_1,\ a_2,\ a_3,\ a_4,\ a_5)$で,
\[ a_1=1,\quad a_n+1 \leqq a_{n+1} \leqq a_n+2 \quad (n=1,\ 2,\ 3,\ 4) \]
を満たすものは全部で$[ ]$組ある.
(3)$3$次関数$f(x)$は$x=1$と$x=2$で極値をとり,曲線$y=f(x)$と曲線$\displaystyle y=\frac{3x}{2 \sqrt{x^2+1}}+1$は点$(0,\ 1)$において共通の接線を持つとする.このとき,$f(x)=[ ]$である.
(4)ある花の$1$個の球根が$1$年後に$3$個,$2$個,$1$個,$0$個(消滅)になる確率はそれぞれ$\displaystyle \frac{3}{10}$,$\displaystyle \frac{2}{5}$,$\displaystyle \frac{1}{5}$,$\displaystyle \frac{1}{10}$であるとする.$1$個の球根が$2$年後に$2$個になっている確率は$[ ]$である.
早稲田大学 私立 早稲田大学 2013年 第3問
$2$つの曲線$y=x^3-x \cdots\cdots①$および$y={(x-a)}^3-(x-a) \cdots\cdots②$がある.ただし,$a>0$とする.次の問に答えよ.

(1)$②$が$x=x_1$で極大値,$x=x_2$で極小値をとり,$x=x_1,\ x_2$における曲線$②$上の点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)曲線$①,\ ②$が異なる$2$点で交わるとき,$a$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$①,\ ②$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.$\beta-\alpha$を$a$を用いて表せ.
(4)$(2)$のとき,曲線$①,\ ②$で囲まれた部分の面積$S$を$a$を用いて表せ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に曲線$C:y=x^2 (x \geqq 0)$がある.この曲線$C$上の点$\mathrm{P}(t,\ t^2)$における接線を$\ell$,点$\mathrm{P}$を通り直線$\ell$に垂直な直線を$m$とする.ただし,$t>0$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)曲線$C$,直線$\ell$,$x$軸で囲まれた部分の面積を$S$とする.$S$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)曲線$C$,直線$m$,$y$軸で囲まれた部分の面積を$T$とする.$T$を$t$を用いて表せ.
(5)$S:T=1:9$となるとき,点$\mathrm{P}$の座標を求めよ.
立教大学 私立 立教大学 2013年 第2問
関数$F(x)$を次のように定める.
\[ F(x)=\left\{ \begin{array}{ll}
x^2 & (x \leqq 1) \\
-x^2+2x & (x>1) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
実数$k$が$0<k<1$を満たすとき,次の問に答えよ.

(1)直線$y=kx$と曲線$y=F(x)$の交点のうち,原点とは異なるものをすべて求めよ.
(2)直線$y=kx$と曲線$y=F(x)$で囲まれた$2$つの部分のうち,直線$y=kx$の下側にある部分の面積$S_1$を$k$を用いて表せ.
(3)直線$y=kx$と曲線$y=F(x)$で囲まれた$2$つの部分のうち,直線$y=kx$の上側にある部分の面積$S_2$を$k$を用いて表せ.
(4)$(2)$で求めた$S_1$と$(3)$で求めた$S_2$の和$S=S_1+S_2$が最小となるときの$k$の値を求めよ.
中京大学 私立 中京大学 2013年 第2問
媒介変数表示$\left\{ \begin{array}{l}
x=\theta-\sin \theta \\
y=\cos \theta
\end{array} \right. (0<\theta<2\pi)$で表される曲線$C$について,次の各問に答えよ.

(1)曲線$C$の導関数$\displaystyle \frac{dy}{dx}$を$\theta$の関数で表せ.
(2)曲線$C$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
東京医科大学 私立 東京医科大学 2013年 第4問
関数$\displaystyle f(x)=\frac{1+4x}{1+\sqrt{x}} (x \geqq 0)$を考える.

(1)関数$f(x)$は$\displaystyle x=\frac{[ア]}{[イ]}-\sqrt{[ウ]}$のとき最小値$[エ] \sqrt{[オ]}-[カ]$をとる.
(2)座標平面上の曲線$C:y=f(x) (x \geqq 0)$と$x$軸,$y$軸および直線$x=1$とで囲まれた部分の面積を$S$とすれば
\[ S=\frac{[キク]}{[ケ]}-[コサ] \log 2 \]
である.ただし,対数は自然対数とする.
愛知学院大学 私立 愛知学院大学 2013年 第2問
曲線$C:y=x^3-tx$上の点$\mathrm{P}(a,\ a^3-ta) (a<0)$における接線$\ell$が$C$と交わる点を$\mathrm{Q}$とする.

(1)点$\mathrm{Q}$の$x$座標を$a$を用いて表すと$x=[アイ]a$である.
(2)点$\mathrm{Q}$における$C$の接線が直線$\mathrm{PQ}$と直交するとき$([ウ]a^2-t)([エオ]a^2-t)=-1$である.
(3)$(2)$を満たす$a$の値がただ$1$つ決まるとき,$\displaystyle t=\frac{[カ]}{[キ]}$である.
兵庫県立大学 公立 兵庫県立大学 2013年 第5問
関数$\displaystyle f(x)=\frac{1}{4}x^2-x+\log (x+1) (x>-1)$について,次の問いに答えよ.ただし,不等式$2<e<3$が成り立つことは使ってよい.

(1)$y=f(x)$のグラフの概形をかけ.ただし,凹凸,変曲点は調べなくてよい.
(2)$a \neq 0$かつ$f(a)=0$となる$a$はただ$1$つあって,$1<a<2$を満たすことを示せ.
(3)区間$[0,\ a]$において曲線$y=f(x)$と$x$軸で囲まれる部分の面積を$S_1$とし,区間$[a,\ 4]$において曲線$y=f(x)$と$x$軸および直線$x=4$で囲まれる部分の面積を$S_2$とする.$S_1<S_2$を示せ.
愛知県立大学 公立 愛知県立大学 2013年 第3問
$a$を$a>2$を満たす実数とし,
\[ f(t)=\frac{\sin^2 at+t^2}{at \sin at},\quad g(t)=\frac{\sin^2 at-t^2}{at \sin at} \quad \left( 0<|t|<\frac{\pi}{2a} \right) \]
とする.また,$C$を曲線$\displaystyle x^2-y^2=\frac{4}{a^2} \left( x \geqq \frac{2}{a} \right)$とする.このとき,以下の問いに答えよ.

(1)点$(f(t),\ g(t))$は,曲線$C$上の点であることを示せ.
(2)点$\displaystyle \left( \lim_{t \to 0}f(t),\ \lim_{t \to 0}g(t) \right)$における曲線$C$の法線の方程式を求めよ.
(3)曲線$C$と(2)で求めた法線および$x$軸とで囲まれた部分を,$x$軸のまわりに$1$回転させてできる回転体の体積を$V(a)$とする.$V(a)$を$a$を用いて表せ.また,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。