タグ「曲線」の検索結果

76ページ目:全1320問中751問~760問を表示)
金沢工業大学 私立 金沢工業大学 2013年 第4問
関数$f(x)=|x-1| \sqrt{x}$を考える.

(1)関数$f(x)$は$\displaystyle x=\frac{[ク]}{[ケ]}$で極大値$\displaystyle \frac{[コ]}{[サ]} \sqrt{[シ]}$をとり,$x=[ス]$で極小値$[セ]$をとる.
(2)曲線$y=f(x)$と$x$軸によって囲まれた図形の面積は$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
(3)曲線$y=f(x)$と$x$軸によって囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テ][ト]}$である.
広島修道大学 私立 広島修道大学 2013年 第3問
関数$f(x)=(x-7) |x-1|$について,次の問に答えよ.

(1)$a$を実数とするとき,方程式$f(x)=a$の異なる実数解の個数を調べよ.
(2)曲線$y=f(x)$と直線$y=x-7$の交点の座標を求めよ.
(3)曲線$y=f(x) (0 \leqq x \leqq 3)$と$2$直線$y=x-7$,$x=3$で囲まれた$2$つの部分の面積の和$S$を求めよ.
広島修道大学 私立 広島修道大学 2013年 第3問
関数$f(x)=2x^3-3x^2-11x+25$と直線$\ell:x-y+2=0$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{A}(1,\ f(1))$と直線$\ell$の距離を求めよ.
(2)曲線$y=f(x)$上の点$\mathrm{P}(x,\ y)$と直線$\ell$の距離$d$を$x$を用いて表せ.
(3)曲線$y=f(x) (x \geqq 0)$を$C$とする.点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{P}$と直線$\ell$の距離の最小値を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第6問
座標平面において,媒介変数$t$の範囲が$0 \leqq t \leqq \pi$であるサイクロイド
\[ x=t-\sin t,\quad y=1-\cos t \]
を$C$とする.

(1)曲線$C$上で$y$座標が最大になる点を$\mathrm{A}$とすると,$\mathrm{A}$の座標は$([ア],\ [イ])$である.
(2)直線$y=x+k$がこの曲線$C$の$0<t \leqq \pi$の部分に接するのは$\displaystyle t=\frac{\pi}{[ウ]}$のときであり,その接点の座標は$\displaystyle \left( \frac{\pi}{[エ]}-[オ],\ [カ] \right)$である.このとき,$\displaystyle k=[キ]-\frac{\pi}{[ク]}$である.
(3)曲線$C$と$x$軸,および点$\mathrm{A}$を通り$y$軸に平行な直線$\ell$で囲まれた図形の面積は$\displaystyle \frac{[ケ]}{[コ]} \pi$である.
(4)$(2)$の接線,$x$軸および直線$\ell$とで囲まれた図形から$(3)$の図形を除いた部分の面積は$\displaystyle \frac{\pi^2}{[サ]}-\frac{\pi}{[シ]}+[ス]$である.
金沢工業大学 私立 金沢工業大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{5}},\ y=\frac{1}{\sqrt{7}-\sqrt{5}}$のとき,
\[ x+y=\sqrt{[ア]},\quad xy=\frac{[イ]}{[ウ]},\quad x^2+y^2=[エ] \]
である.
(2)連立不等式$\left\{ \begin{array}{l}
2x+3 \leqq 4x-7 \\
|x-6|<3
\end{array} \right.$の解は$[オ] \leqq x<[カ]$である.
(3)関数$y=-2x^2+6x-1 (0 \leqq x \leqq 4)$は$\displaystyle x=\frac{[キ]}{[ク]}$で最大値$\displaystyle \frac{[ケ]}{[コ]}$をとり,$x=[サ]$で最小値$[シ][ス]$をとる.
(4)放物線$y=x^2-3x+2$を$x$軸方向に$3$,$y$軸方向に$-2$だけ平行移動してできる曲線は放物線$y=x^2-[セ]x+[ソ][タ]$である.
(5)$0^\circ \leqq \theta \leqq 180^\circ$とする.$\tan \theta=-\sqrt{6}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{[チ][ツ]}}{[テ]}$,$\displaystyle \cos \theta=-\frac{\sqrt{[ト]}}{[ナ]}$である.
(6)$(x^2-1)^{10}$の展開式における$x^4$の係数は$[ア][イ]$である.
(7)赤球$5$個,白球$3$個が入っている袋から$2$個の球を同時に取り出すとき,取り出した球が$2$個とも赤球である確率は$\displaystyle \frac{[ウ]}{[エ][オ]}$であり,取り出した$2$個の球が異なる色である確率は$\displaystyle \frac{[カ][キ]}{[ク][ケ]}$である.
(8)$\triangle \mathrm{ABC}$において$\mathrm{AB}=4$,$\mathrm{BC}=9$,$\mathrm{CA}=7$であるとき,$\displaystyle \cos A=\frac{[コ][サ]}{[シ]}$である.また,$\triangle \mathrm{ABC}$の面積は$[ス] \sqrt{[セ]}$である.
日本女子大学 私立 日本女子大学 2013年 第4問
曲線$\displaystyle y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸,$y$軸で囲まれた図形の面積が,$2$つの曲線$y=a \sin x$,$y=b \sin x (0<b<a)$によって$3$等分されるとき,定数$a,\ b$の値を求めよ.
神奈川大学 私立 神奈川大学 2013年 第3問
曲線$C:y=x^3$上の点$\mathrm{P}(t,\ t^3)$における接線を$\ell$とする.$\ell$の$\mathrm{P}$とは異なる$C$との交点を$\mathrm{Q}$とし,$C$と$\ell$とで囲まれた部分を$S$とする.このとき,次の問いに答えよ.ただし,$t>0$とする.

(1)接線$\ell$の方程式と,点$\mathrm{Q}$の座標を求めよ.
(2)原点$\mathrm{O}$と$2$点$\mathrm{P}$,$\mathrm{Q}$の中点を通る直線を$m$とする.$m$の方程式を求めよ.
(3)$(2)$の直線$m$により$S$は$2$つの部分に分けられる.$x$軸で$x>0$の一部を含む部分の面積を$s_1$とし,もう一方の面積を$s_2$とする.このとき$\displaystyle \frac{s_1}{s_2}$を求めよ.
津田塾大学 私立 津田塾大学 2013年 第2問
$f(x)=2x^3-6x+1$とし,曲線$y=f(x)$を$C$とする.

(1)$C$上の点$(a,\ f(a))$における接線の方程式を求めよ.
(2)$(1)$で求めた接線を$y$軸方向に$+1$平行移動した直線を$\ell$とする.$\ell$と$C$が接するときの$a$の値を求めよ.
津田塾大学 私立 津田塾大学 2013年 第3問
曲線$y=-x^2+1$を$C_1$とし,曲線$y=2 |x(1-x)|$を$C_2$とする.

(1)$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2013年 第1問
次の問に答えよ.

(1)極限値$\displaystyle \lim_{x \to 0} \frac{x(e^{3x}-1)}{1-\cos x}$を求めよ.

(2)関数$y=f(x)$は$0 \leqq x \leqq 3$において連続で,$f(x)>0$とする.曲線$y=f(x)$,$x$軸,および直線$x=0$,$x=3$により囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$6 \pi$であり,$D$を直線$y=-1$のまわりに$1$回転してできる回転体の体積は$13 \pi$である.$D$の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。