タグ「曲線」の検索結果

72ページ目:全1320問中711問~720問を表示)
長崎大学 国立 長崎大学 2013年 第7問
半径$1$の円と長さ$2$の線分がある.この線分の一方の端点を,円の中心に合わせて円上に固定した図形を考える.線分の端点で,円の中心とは異なるものを$\mathrm{P}$とする.この図形を下の図$1$のように$xy$平面上に置く.すなわち,中心が点$(0,\ 1)$,$\mathrm{P}$が点$(0,\ -1)$と一致するように置く.次に,$x$軸上で正の方向に,すべらないように円を半回転させる.下の図$2$は円が$\theta$だけ回転したときの状態を表している.$0 \leqq \theta \leqq \pi$の範囲で,点$\mathrm{P}$が描く曲線$C$について考察する.次の問いに答えよ.
(図は省略)

(1)図$2$における点$\mathrm{P}$の$x$座標と$y$座標を,それぞれ$\theta$を用いて表せ.
(2)曲線$C$上にあって,$x$座標が最小となる点,最大となる点,$y$座標が最小となる点,最大となる点について,それぞれの座標を求めよ.
(3)曲線$C$と$2$直線$y=-1$および$x=\pi$によって囲まれた図形の面積$S$を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
京都教育大学 国立 京都教育大学 2013年 第6問
関数$f(x)$が次のように与えられているとする.
\[ f(x)=\frac{1}{4}(1-x^2)^2-\theta x \]
ただし$\theta$は実数とする.以下の問に答えよ.

(1)曲線$y=f(x)$上の点$\displaystyle \left( 0,\ \frac{1}{4} \right)$における接線の方程式を求めよ.
(2)曲線$y=f(x)$と$(1)$で求めた接線によって囲まれる図形の面積を求めよ.
(3)関数$f(x)$が極大値をもつときの$\theta$の範囲を求めよ.
島根大学 国立 島根大学 2013年 第3問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
島根大学 国立 島根大学 2013年 第1問
$3$次関数$f(x)$は$x=1$と$x=3$で極値をとり,曲線$y=f(x)$は点$(0,\ 1)$と点$(1,\ 3)$を通るとする.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(3)曲線$y=f(x)$に接し,原点$(0,\ 0)$を通る直線の本数を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2013年 第3問
$a,\ b$を正の定数とする.曲線$y=e^{-ax}\sin bx \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
鳥取大学 国立 鳥取大学 2013年 第4問
実数$t$の関数$\alpha(t),\ \beta(t)$を$\displaystyle \alpha(t)=\frac{e^t+e^{-t}}{2}$,$\displaystyle \beta(t)=\frac{e^t-e^{-t}}{2}$で定める.実数の定数$p$に対して点$\mathrm{P}(x,\ y)$の$x$座標および$y$座標を,複素数
\[ z=\frac{ip \alpha(t)+\beta(t)}{ip \beta(t)+\alpha(t)} \]
の実部および虚部でそれぞれ与える.ただし$i$は虚数単位とする.

(1)$\{\alpha(t)\}^2-\{\beta(t)\}^2=1$となることを示し,$x,\ y$を$t$の関数として表せ.
(2)点$\mathrm{P}$の$x$座標の$t \to \infty$および$t \to -\infty$のときの極限値をそれぞれ求めよ.
(3)$p \neq 0$のとき,点$\mathrm{P}$の描く曲線を$x$と$y$の関係式で表せ.
鳥取大学 国立 鳥取大学 2013年 第3問
$\displaystyle I=\int e^{-x}\sin x \, dx,\ J=\int e^{-x}\cos x \, dx$とするとき,次の問いに答えよ.

(1)次の関係式が成り立つことを証明せよ.
\[ I=J-e^{-x}\sin x,\quad J=-I-e^{-x}\cos x \]
(2)$I,\ J$を求めよ.
(3)曲線$y=e^{-x}\sin x \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
三重大学 国立 三重大学 2013年 第1問
$a,\ b$を実数とし,$i$を虚数単位とする.$2$次方程式$x^2+ax+b=0$の解の$1$つが$1-\sqrt{2}i$であるとき,以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$2$次関数$y=x^2+ax+b$のグラフの軸と頂点を求め,そのグラフをかけ.
(3)曲線$y=x^2+ax+b$と直線$y=3$とで囲まれた部分の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。