タグ「曲線」の検索結果

71ページ目:全1320問中701問~710問を表示)
福井大学 国立 福井大学 2013年 第5問
$x>0$の範囲で関数$f(x)$を,$\displaystyle f(x)=\int_0^2 (|t^2-2xt|+xt) \, dt$により定めるとき,以下の問いに答えよ.

(1)$0<x \leqq 1$のとき,$f(x)$を求めよ.
(2)$x$が$x>0$の範囲を動くとき,$f(x)$の最小値とそのときの$x$の値を求めよ.
(3)曲線$y=f(x)$と直線$y=4x+k$が異なる$2$点で交わるように,定数$k$の値の範囲を定めよ.
福井大学 国立 福井大学 2013年 第3問
次の問いに答えよ.

(1)$m,\ n$を自然数とするとき,次の不定積分を計算せよ.
\[ \int \cos mx \cos nx \, dx \]
(2)$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くときに$\mathrm{R}$の描く曲線と,直線$y=x$により囲まれる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第1問
関数$f(x)$を$f(x)=x \sin x$とおく.また,曲線$y=f(x)$上の点$(\alpha,\ f(\alpha))$における接線の方程式を$y=g(x)$とおく.$\alpha>0$のとき,以下の問いに答えよ.

(1)$g(x)$を$\alpha$を用いて表せ.
(2)直線$y=g(x)$が原点を通るような最小の$\alpha$を$\alpha_1$とし,$\alpha=\alpha_1$のときの$g(x)$を$h(x)$とおく.$\alpha_1$の値と$h(x)$を求めよ.
(3)$0 \leqq x \leqq \alpha_1$において$h(x) \geqq f(x)$であることを示せ.
(4)$0 \leqq x \leqq \alpha_1$において直線$y=h(x)$と曲線$y=f(x)$で囲まれてできる図形の面積を求めよ.
山口大学 国立 山口大学 2013年 第3問
$xy$平面において,曲線$\displaystyle y=\frac{x}{x^2+1}$と$\displaystyle y=\frac{x^2}{2}$の原点以外の交点を$\mathrm{P}$とする.また,この$2$つの曲線で囲まれた図形を$D$とする.このとき,次の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)$D$の面積を求めなさい.
(3)$D$を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
島根大学 国立 島根大学 2013年 第1問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
島根大学 国立 島根大学 2013年 第3問
$A$を$2$次正方行列とする.座標平面上の点$\mathrm{P}_1(1,\ 0)$が,$A$の表す移動により$\displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に,$A^2$の表す移動により$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に移るとする.このとき,次の問いに答えよ.

(1)$A$を求めよ.
(2)$\displaystyle B=\frac{1}{2}A^3$とする.$B$の表す移動によって,点$\mathrm{P}_1$が移る点を$\mathrm{P}_2$と定め,点$\mathrm{P}_2$が移る点を$\mathrm{P}_3$と定める.以下同様にして$B$の表す移動によって点$\mathrm{P}_{n-1}$が移る点を$\mathrm{P}_n$と定める.このとき,点$\mathrm{P}_n$の座標を求めよ.
(3)(2)で定めた点$\mathrm{P}_n$から曲線$y=x^2$に引いた接線で,$x$軸に平行でないものの傾きを$a_n$とおく.このとき,$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第5問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t)$における接線を$\ell$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸の交点,接線$\ell$と$y$軸の交点の座標をそれぞれ求めよ.
(3)曲線$C$,接線$\ell$,$y$軸および直線$x=1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$0 \leqq t \leqq 1$とする.このとき,$S(t)$の最大値およびそのときの$t$の値,$S(t)$の最小値およびそのときの$t$の値をそれぞれ求めよ.
長崎大学 国立 長崎大学 2013年 第6問
次の問いに答えよ.

(1)関数$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$の増減およびグラフの凹凸を調べよ.また,$y$の最大値およびそのときの$x$の値,$y$の最小値およびそのときの$x$の値をそれぞれ求めよ.
(2)$2$つの曲線$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$と$y=-x+2+\sqrt{1-x^2} (-1 \leqq x \leqq 1)$によって囲まれた図形$D$を座標平面上に描け.なお,$D$の境界が座標軸との共有点をもつならば,その座標も記入せよ.
(3)上の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。