タグ「曲線」の検索結果

69ページ目:全1320問中681問~690問を表示)
島根大学 国立 島根大学 2013年 第2問
$3$次関数$f(x)$は$x=1$と$x=3$で極値をとり,曲線$y=f(x)$は点$(0,\ 1)$と点$(1,\ 3)$を通るとする.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(3)曲線$y=f(x)$に接し,原点$(0,\ 0)$を通る直線の本数を求めよ.
山形大学 国立 山形大学 2013年 第1問
次の問いに答えよ.

(1)$2$つの循環小数$a=1. \dot{2}$,$b=0. \dot{8} \dot{1}$に対して,$ab$の値を求めよ.
(2)$a$を定数とする.$xy$平面上の曲線$y=\log_2x$と直線$y=x+a$は$2$つの共有点をもつ.共有点の$x$座標$x_1,\ x_2$が$x_2=4x_1$を満たすように,$a$の値を定めよ.
(3)$xy$平面において,曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$と直線$\displaystyle y=-x+\frac{10}{3}$の$2$つの共有点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$C$上の点$\mathrm{P}$が$\mathrm{PA}=\mathrm{PB}$を満たすとき,$\triangle \mathrm{PAB}$の面積を求めよ.
東京農工大学 国立 東京農工大学 2013年 第2問
$xyz$空間に点$\mathrm{P}(0,\ 0,\ 5)$がある.次の問いに答えよ.

(1)球面$x^2+y^2+(z-2)^2=9$と平面$\displaystyle x=\frac{1}{2}$が交わってできる円を$C$とする.$C$の中心の座標と半径を求めよ.
(2)$C$上に点$\displaystyle \mathrm{Q} \left( \frac{1}{2},\ s,\ t \right)$をとったとき,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線と$xy$平面との交点を$\mathrm{R}(X,\ Y,\ 0)$とする.$X,\ Y$それぞれを$s,\ t$の式で表せ.
(3)$\mathrm{Q}$が$C$上のすべての点を動くとき,$\mathrm{R}$が描く曲線を$C^\prime$とする.$C^\prime$の長さ$L$を求めよ.
三重大学 国立 三重大学 2013年 第1問
$a,\ b$を実数とし,$i$を虚数単位とする.$2$次方程式$x^2+ax+b=0$の解の$1$つが$1-\sqrt{2}i$であるとき,以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$2$次関数$y=x^2+ax+b$のグラフの軸と頂点を求め,そのグラフをかけ.
(3)曲線$y=x^2+ax+b$と直線$y=3$とで囲まれた部分の面積を求めよ.
三重大学 国立 三重大学 2013年 第4問
$y^2=(x-2)^2(x+1)$で決まる曲線を$C$とする.以下の問いに答えよ.

(1)関数$y=(x-2) \sqrt{x+1}$の増減を調べ,関数のグラフの概形をかけ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$で囲まれる部分の面積を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第6問
座標平面上で原点$\mathrm{O}$を中心とする半径$1$の円の第$1$象限の部分を$C$とする.曲線$y=f(x) \ (0<x<1)$は第$4$象限にあり,かつすべての$x_1 \ (0<x_1<1)$について,点$(x_1,\ f(x_1))$における接線が$C$上の点$(x_1,\ y_1)$における$C$の接線と直交しているとする.曲線$y=f(x)$上の動点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)点$\mathrm{P}$における$y=f(x)$の接線と$y$軸との交点を$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さは常に$1$であることを示せ.
(3)$x$軸上と$y$軸上に$2$辺をもち,線分$\mathrm{OP}$を対角線とする長方形の面積を$S$とする.点$\mathrm{P}$が$S$を最大にする位置にあるとき,$\mathrm{P}$は$\mathrm{P}$における曲線の接線と座標軸が交わってできる$2$点の中点であることを示せ.
(4)$f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to 1-0}f(x)=0$であるとする.
大分大学 国立 大分大学 2013年 第3問
曲線$y=x^2$の上を動く点$\mathrm{P}(x,\ y)$がある.この動点の速度ベクトルの大きさが一定$C$のとき,次の問いに答えよ.ただし,動点$\mathrm{P}(x,\ y)$は時刻$t$に対して$x$が増加するように動くとする.

(1)$\mathrm{P}(x,\ y)$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$を$x$で表せ.
(2)$\mathrm{P}(x,\ y)$の加速度ベクトル$\displaystyle \overrightarrow{\alpha}=\left( \frac{d^2x}{dt^2},\ \frac{d^2y}{dt^2} \right)$を$x$で表せ.
(3)半径$r$の円$x^2+(y-r)^2=r^2$上を速度ベクトルの大きさが一定$C$で動く点$\mathrm{Q}$があるとき,この加速度ベクトルの大きさを求めよ.
(4)動点$\mathrm{P}$と$\mathrm{Q}$の原点$(0,\ 0)$での加速度ベクトルの大きさが等しくなるときの半径$r$を求めよ.
山形大学 国立 山形大学 2013年 第3問
関数$\displaystyle f(x)=\frac{1}{2}x^2 \ (x \geqq 0)$の逆関数を$f^{-1}(x)$とする.$xy$平面上に$2$曲線$C_1:y=f(x)$と$C_2:y=f^{-1}(x)$がある.次の問いに答えよ.

(1)$2$曲線$C_1,\ C_2$で囲まれた図形の面積を求めよ.
(2)$a \geqq 2$とする.曲線$C_1$上の点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{2} \right)$における接線を$\ell_1$,曲線$C_2$上の点$\displaystyle \mathrm{B} \left( \frac{a^2}{2},\ a \right)$における接線を$\ell_2$とし,$2$直線$\ell_1,\ \ell_2$のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.

(i) $\tan \theta$を$a$の式で表せ.
(ii) $\displaystyle \lim_{a \to \infty} \sin^2 \theta$を求めよ.
東京農工大学 国立 東京農工大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)=\log (x+\sqrt{x^2+1})$とする.ただし,対数は自然対数とする.

(i) $f(x)$の導関数$f^\prime(x)$を求めよ.
(ii) 直線$y=x$と直線$\displaystyle x=\frac{3}{4}$および曲線$y=f(x)$で囲まれた部分の面積$S$を求めよ.

(2)$\displaystyle \alpha=\frac{2}{5}\pi$とする.

(i) $\cos 3\alpha=\cos 2\alpha$が成り立つことを用いて,$\cos \alpha$と$\cos 2\alpha$の値を求めよ.
(ii) $2$個のさいころを同時に投げるとき,出る目の数の和を$N$とする.このとき,座標平面上の点$\mathrm{P}(1,\ \sqrt{3})$を原点$\mathrm{O}$のまわりに角$N \alpha$だけ回転した点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積を$T$とする.$T$の期待値を求めよ.
大分大学 国立 大分大学 2013年 第4問
$f(x)=\log 2x$とし,曲線$y=f(x)$を$C$とする.曲線$C$と$x$軸との交点における曲線$C$の接線$\ell$の方程式を$y=g(x)$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)$h(x)=g(x)-f(x) \ (x>0)$とおくと,$h(x) \geqq 0 \ (x>0)$であることを示しなさい.また,$h(x)=0$となる$x$の値を求めなさい.
(3)曲線$C$と直線$\ell$と直線$\displaystyle x=\frac{1}{2}e$で囲まれた部分の面積$S$を求めなさい.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。