タグ「曲線」の検索結果

62ページ目:全1320問中611問~620問を表示)
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$f(x)$は$x$の$4$次関数であり,点$\mathrm{A}(2,\ 1)$,点$\mathrm{B}(0,\ k)$,点$\displaystyle \mathrm{C} \left( -1,\ \frac{13}{4} \right)$の$3$点で極値をもつ.次の問いに答えよ.

(1)$k$および$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$\mathrm{A}$が原点$\mathrm{O}$になるように,曲線$y=f(x)$を平行移動した曲線の方程式$y=g(x)$を求めよ.
(3)放物線$y=px^2$が$y=g(x)$と原点$\mathrm{O}$以外で共有点をもたないための$p$の条件を求めよ.
(図は省略)
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
会津大学 公立 会津大学 2014年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int \frac{dx}{x(\log x)^2}=[イ]$

(ii) $\displaystyle \int_{6\pi}^{7\pi} x \sin x \, dx=[ロ]$

(iii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos 2x \cos x \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} (\sqrt{n(n+3)}-n)=[ニ] \]
(3)$3^x=5^y=15^{6}$をみたす実数$x,\ y$について,$\displaystyle \frac{1}{x}+\frac{1}{y}=[ホ]$である.
(4)$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(2,\ 0)$からの距離の比が$1:2$である点$\mathrm{P}(x,\ y)$の軌跡を表す曲線の方程式は$[ヘ]$である.
(5)$2$つのベクトル$\overrightarrow{a}=(2,\ 3,\ 2)$,$\overrightarrow{b}=(1,\ 0,\ -2)$の両方に垂直で,大きさが$1$であるベクトルは$[ト]$と$[チ]$である.
北九州市立大学 公立 北九州市立大学 2014年 第2問
$2$つの曲線$C_1:f(x)=x^3-x$と$C_2:g(x)=x^3+x^2+ax$について考える.ただし,$a$は定数である.曲線$C_1$上の点$\displaystyle \mathrm{A}(\frac{1}{2},\ -\frac{3}{8})$における接線を$\ell$とし,点$\mathrm{A}$と異なる点$\mathrm{B}(p,\ q)$において曲線$C_1$と直線$\ell$は交わっている.以下の問題に答えよ.

(1)曲線$C_1$を原点に関して対称移動したグラフは$C_1$自身であることを証明せよ.
(2)直線$\ell$の方程式と$p,\ q$の値を求めよ.
(3)関数$f(x)$の$\displaystyle p \leqq x \leqq \frac{1}{2}$における最大値と最小値を求めよ.
(4)関数$g(x)$が極値を持たないための必要十分条件を導関数$g^\prime(x)$を用いて表せ.また,このときの定数$a$の値の範囲を求めよ.
(5)$a=1$のとき,$2$つの曲線$C_1$と$C_2$で囲まれた図形の面積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第3問
区間$-1 \leqq x \leqq 1$で定義された連続関数$f(x)$を
\[ 12xf(x)+12 \int_0^x f(t) \, dt=15x^3 |x|-16x^3,\quad f(0)=0 \]
によって定める.曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$は$x=0$で微分可能であることを示せ.
(3)曲線$C$と直線$\ell:y=a$との区間$-1 \leqq x \leqq 1$における共有点の個数を,$a$の値によって分類せよ.
(4)曲線$C$と$3$直線$y=-1$,$x=-1$,$x=1$で囲まれる部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
三重県立看護大学 公立 三重県立看護大学 2014年 第4問
曲線$①$は点$(-2,\ 0)$,曲線$②$は点$(0,\ -2)$を通り,両者は原点および$(-1,\ -1)$で交わる.このとき,次の$(1)$および$(2)$の設問に答えなさい.

$y=ax^2+bx+c \cdots\cdots①$
$x=dy^2+ey+f \cdots\cdots②$


(1)$a,\ b,\ c,\ d,\ e,\ f$にあてはまる係数を求めなさい.
(2)曲線$①$および$②$を図示し,両曲線によって囲まれた部分の面積を求めなさい.
埼玉大学 国立 埼玉大学 2013年 第2問
曲線$C:y=(x^2-x-1)^2-1$と直線$\ell_a:y=a \ (a \text{は実数})$を考える.

(1)曲線$C$と直線$\ell_a$の共有点の個数を求めよ.
(2)曲線$C$と$x$軸で囲まれた部分の面積の和を求めよ.
埼玉大学 国立 埼玉大学 2013年 第3問
関数$f(x)=xe^{-x}$について,実数$a,\ b$は次の条件を満たすものとする.

$(\mathrm{A})$ $\displaystyle \int_0^1 f(x) \, dx=f(a) \quad (0<a<1),$
$(\mathrm{B})$ $f(1)-f(0)=f^\prime(b) \quad (0<b<1)$

また,点$(0,\ 0)$,$(a,\ e^a)$を通る直線を$\ell_1$とし,点$(1,\ 0)$,$(b,\ e^b)$を通る直線を$\ell_2$とする.

(1)$(\mathrm{A})$,$(\mathrm{B})$を利用して,$\ell_1,\ \ell_2$の方程式を$a,\ b$を用いずに表せ.
(2)$\ell_1$と$\ell_2$の交点を求めよ.さらに,曲線$y=e^x$上の点$(1,\ e)$における接線と直線$\ell_2$の交点を求めよ.
(3)次の不等式が成り立つことを示せ.
\[ a<\frac{e-2}{e-1}<b<\frac{1}{2} \]
ただし,必要ならば$e=2.718 \cdots,\ \log(e-1)=0.541 \cdots$を用いてよい.
京都大学 国立 京都大学 2013年 第5問
$xy$平面内で,$y$軸上の点$\mathrm{P}$を中心とする円$C$が$2$つの曲線
\[ C_1:y=\sqrt{3}\log (1+x),\quad C_2:y=\sqrt{3}\log (1-x) \]
とそれぞれ点$\mathrm{A}$,点$\mathrm{B}$で接しているとする.さらに$\triangle \mathrm{PAB}$は$\mathrm{A}$と$\mathrm{B}$が$y$軸に関して対称な位置にある正三角形であるとする.このとき$3$つの曲線$C$,$C_1$,$C_2$で囲まれた部分の面積を求めよ.
埼玉大学 国立 埼玉大学 2013年 第4問
$xyz$空間における平面$y=0$上のグラフ$z=2-x^2,\ (0 \leqq x \leqq \sqrt{2})$を$z$軸の周りに回転して得られるものを平面$x=a$で切りとる.ただし$0 \leqq a \leqq \sqrt{2}$とする.そのとき切り口の平面に曲線$G$が現れた.$G$上の点$(x,\ y,\ z)$は,
\[ x=a,\quad z=2-a^2-y^2 \quad (-\sqrt{2-a^2} \leqq y \leqq \sqrt{2-a^2}) \]
をみたす.切り口の平面$x=a$上において点$(a,\ 0,\ 0)$と曲線$G$上の点の距離の最大値を$r(a)$とする.このとき下記の設問に答えよ.

(1)$0 \leqq a \leqq \sqrt{2}$に対して$r(a)$を求めよ.
(2)次の積分値を求めよ.
\[ \pi \int_1^{\sqrt{2}}(r(x))^2 \,dx \]
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。