タグ「曲線」の検索結果

56ページ目:全1320問中551問~560問を表示)
津田塾大学 私立 津田塾大学 2014年 第4問
関数$\displaystyle f(x)=\frac{2}{2-x}$について,以下の問に答えよ.

(1)$y=f(x)$のグラフをかけ.

(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.

(3)$0 \leqq a \leqq 1$とし,点$(a,\ f(a))$における曲線$y=f(x)$の接線を$y=g(x)$とする.定積分$\displaystyle \int_0^1 g(x) \, dx$の値$S$を最大にする$a$の値と,そのときの$S$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第3問
関数$f(t)=2 |t-1|$について,次の問に答えよ.

(1)$\displaystyle g(x)=\int_0^x f(t) \, dt$とおく.$g(x)$を求めよ.
(2)曲線$y=g(x)$のグラフをかけ.
(3)曲線$y=g(x)$と,点$(2,\ g(2))$における$y=g(x)$の接線で囲まれた領域の面積を求めよ.
神奈川大学 私立 神奈川大学 2014年 第3問
$x>0$に対して,曲線$\displaystyle C:y=\frac{1}{x^2}$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t^2} \right)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}$とする.また,点$(t,\ 0)$を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)三角形$\mathrm{PHQ}$の面積$S_1$を求めよ.
(3)曲線$C$,線分$\mathrm{PQ}$および$\mathrm{Q}$を通る$y$軸に平行な直線で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_1}{S_2}$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄$[$1$]$から$[$6$]$にあてはまる数または数式を記入せよ.

(1)$3$次曲線$y=x^3-6x^2+11x-4$と直線$y=ax$が第$1$象限の相異なる$3$点で交わるような定数$a$の範囲は$[$1$]<a<[$2$]$である.
(2)硬貨を投げ,$3$回つづけて表が出たら終了する.$n$回以下で終了する場合の数を$f_n$とする.$f_{10}=[$3$]$である.
(3)不等式$\displaystyle \frac{a}{19}<\log_{10}7<\frac{b}{13}$を満たす最大の整数$a$と最小の整数$b$は$a=[$4$]$,$b=[$5$]$である.必要に応じて次の事実を用いてもよい.
\[ \begin{array}{lll}
7^1=7 & 7^2=49 & 7^3=343 \\
7^4=2401 & 7^5=16807 & 7^6=117649 \\
7^7=823543 & 7^8=5764801 & 7^9=40353607 \\
7^{10}=282475249 & 7^{11}=1977326743 & 7^{12}=13841287201 \\
7^{13}=96889010407 & 7^{14}=678223072849
\end{array} \]
(4)四面体$\mathrm{ABCD}$は,$4$つの面のどれも$3$辺の長さが$7,\ 8,\ 9$の三角形である.この四面体$\mathrm{ABCD}$の体積は$[$6$]$である.
大同大学 私立 大同大学 2014年 第4問
$0<a<2$とする.曲線$y=x^4$の点$(a,\ a^4)$における接線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)曲線$y=x^4$と$\ell$および$y$軸で囲まれる部分の面積$S(a)$を求めよ.
(3)曲線$y=x^4 (x \geqq a)$と直線$y=a^4$および直線$x=2$で囲まれる部分の面積$T(a)$を求めよ.
(4)$S(a)+T(a)$を最小にする$a$の値を求めよ.
大同大学 私立 大同大学 2014年 第5問
$y=x+\sqrt{x^2+5}$のとき,$x$を$y$で表した式を$x=f(y)$とする.

(1)$f(y)$を求めよ.

(2)定積分$\displaystyle \int_{\sqrt{5}}^5 f(y) \, dy$の値を求めよ.

(3)曲線$y=x+\sqrt{x^2+5}$,$x$軸,$y$軸および直線$x=2$で囲まれる部分の面積を求めよ.
北里大学 私立 北里大学 2014年 第3問
関数$f(x)=x^3+ax^2+bx+c$は$x=p$で極大値$f(p)$,$x=1$で極小値$-4$をとるものとする.ただし,$a,\ b,\ c,\ p$は定数とする.次の問に答えよ.

(1)$a,\ b,\ c$を$p$を用いて表せ.
(2)曲線$y=f(x)$上の点$(2,\ f(2))$における接線を$\ell$とする.接線$\ell$の傾きを$p$を用いて表せ.
(3)$(2)$の接線$\ell$が点$(2p,\ f(2p))$を通るとき,$p$の値を求めよ.また,このとき極大値$f(p)$の値を求めよ.
北里大学 私立 北里大学 2014年 第1問
つぎの$[ ]$にあてはまる答を記せ.

(1)空間に$4$点$\mathrm{A}(5,\ 1,\ 3)$,$\mathrm{B}(4,\ 4,\ 3)$,$\mathrm{C}(2,\ 3,\ 5)$,$\mathrm{D}(4,\ 1,\ 3)$がある.

(i) $\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$のなす角を$\theta$とおくとき,$\theta=[ア]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(ii) 四面体$\mathrm{ABCD}$の体積は$[イ]$である.

(2)$a$を実数とする.$x$についての$2$次方程式$x^2-2x \log_2 \{(a+1)(a-5)\}+4=0$の解の$1$つが$2$であるとき,$a$の値は$[ウ]$である.また,この$2$次方程式が実数解をもたないような$a$の値の範囲は$[エ]$である.
(3)不等式$\displaystyle x^2+2x \leqq y \leqq 2x+2 \leqq \frac{4}{3}y$の表す領域の面積は$[オ]$である.また,この領域上の点$(x,\ y)$のうち,$5x-3y$が最小となるような点の座標は$[カ]$である.
(4)$n$は正の整数とする.階段を$1$度に$1$段,$2$段または$3$段登る.このとき,$n$段からなる階段の登り方の総数を$a_n$とする.例えば,$a_1=1$であり,$a_2=2$である.

(i) $a_3$の値は$[キ]$である.
(ii) $a_4$の値は$[ク]$である.
(iii) $a_{10}$の値は$[ケ]$である.

(5)$\displaystyle 0<t<\frac{\pi}{2}$とする.曲線$y=\sin x$上の点$\displaystyle \mathrm{P} \left( t+\frac{\pi}{2},\ \sin \left( t+\frac{\pi}{2} \right) \right)$における法線を$\ell$とおく.直線$\displaystyle x=\frac{\pi}{2}$を$m$とおき,法線$\ell$と直線$m$の交点を$\mathrm{Q}$とする.

(i) $\displaystyle t=\frac{\pi}{3}$のとき,点$\mathrm{Q}$の座標は$[コ]$である.
(ii) 曲線$y=\sin x$と法線$\ell$および直線$m$で囲まれた部分の面積を$S(t)$とするとき,極限$\displaystyle \lim_{t \to +0} \frac{S(t)}{t}$の値は$[サ]$である.
久留米大学 私立 久留米大学 2014年 第4問
$2$つの曲線$y=6 \sin x$と$y=4-2 \cos 2x$は$x=[$10$]$で共通点を持つ.また,この$2$つの曲線で囲まれた部分の面積は$[$11$]$である.ただし,$0 \leqq x \leqq \pi$とする.
北里大学 私立 北里大学 2014年 第3問
$a$は$0<a<e$を満たす定数とする.曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$,法線を$m$とおく.以下の問に答えよ.必要ならば$\displaystyle e=\lim_{k \to 0}(1+k)^{\frac{1}{k}}$で,$2.718<e<2.719$であることを用いてよい.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)接線$\ell$が$x$軸と交わる点を$\mathrm{P}$,$y$軸と交わる点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.三角形$\mathrm{OPQ}$の面積を$S(a)$とおくとき,$S(a)$を$a$を用いて表せ.
(3)$a$が$0<a<e$の範囲を動くとき,$(2)$の$S(a)$を最大にする$a$の値と$S(a)$の最大値を求めよ.
(4)$a$が$0<a<e$の範囲を動くとき,法線$m$が点$(e,\ 0)$を通るような$a$の値の個数はただ$1$個であることを示せ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。