タグ「曲線」の検索結果

55ページ目:全1320問中541問~550問を表示)
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点$\mathrm{O}$を通り,曲線$y=2+2 \log x$に接する直線を$\ell$とし,その接点を$\mathrm{A}$とする.また,この曲線と直線$\ell$,および$x$軸で囲まれた図形を$D$とする.

(1)この曲線と$x$軸との交点の$x$座標は$\displaystyle \frac{[ア]}{e}$である.
(2)接点$\mathrm{A}$の座標は$([イ],\ [ウ])$である.
(3)図形$D$の面積は$\displaystyle [エ]-\frac{[オ]}{e}$である.
(4)図形$D$を$x$軸のまわりに$1$回転してできる立体の体積は$\displaystyle \frac{[カ]([キ]-e)}{[ク]e} \pi$である.
名城大学 私立 名城大学 2014年 第1問
次の$[ ]$内に答えを記入せよ.

(1)箱の中に赤玉$1$個と白玉$2$個が入っている.箱の中から玉を$1$個取り出し,その色を見てから箱の中へ戻す試行をくり返す.玉を取り出すごとに,それが赤ならばくじを$2$回,白ならばくじを$1$回引くものとする.この操作を$n$回くり返すとき,くじを引く総回数の期待値を$E(n)$とおく.そのとき,$E(1)=[ア]$,$E(3)=[イ]$である.
(2)$f(x)=x^3+ax^2+bx$とする.曲線$y=f(x)$上の$2$点$\mathrm{P}(1,\ f(1))$,$\mathrm{Q}(-1,\ f(-1))$における接線が直交し,点$\mathrm{P}$で接線の傾きが$10$のとき,$a=[ウ]$,$b=[エ]$である.
南山大学 私立 南山大学 2014年 第3問
曲線$y=e^{-x} \cos x$上の点$(a,\ e^{-a} \cos a)$における接線の方程式を$y=g(x)$とする.

(1)$g(x)$を求めよ.
(2)定積分$\displaystyle A=\int_0^{\frac{\pi}{2}} \sin x \, dx$と$\displaystyle B=\int_0^{\frac{\pi}{2}} x \sin x \, dx$を計算せよ.
(3)定積分$\displaystyle S=\int_0^{\frac{\pi}{2}} g(x) \sin x \, dx$を計算せよ.
(4)$a$が$0 \leqq a \leqq \pi$の範囲を動くとき,$(3)$の$S$を最大にする$a$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第5問
原点を$\mathrm{O}$とする座標平面において,次の極方程式で表される$2$つの曲線を考える.
\[ r=f(\theta)=3 \cos \theta,\quad r=g(\theta)=1+\cos \theta \]
ただし,$0 \leqq \theta<2\pi$とする.また,極座標が$(f(\theta),\ \theta)$,$(g(\theta),\ \theta)$である点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$は,中心が直交座標で$\displaystyle \left( \frac{[ア]}{[イ]},\ [ウ] \right)$であり,半径が$\displaystyle \frac{[エ]}{[オ]}$である円の周上を動く.
(2)点$\mathrm{P}(f(\theta),\ \theta)$と点$\mathrm{Q}(g(\theta),\ \theta)$の間の距離は$\displaystyle \theta=\frac{\pi}{[カ]}$および$\displaystyle \frac{[キ]}{[ク]}\pi$のとき最小値$[ケ]$をとり,$\theta=[コ]$のとき最大値$[サ]$をとる.
(3)線分$\mathrm{PQ}$の中点が原点$\mathrm{O}$となるとき,点$\mathrm{P}$の直交座標は$\displaystyle \left( \frac{[シ]}{[スセ]},\ \pm \frac{[ソ] \sqrt{[タチ]}}{[ツテ]} \right)$である.
青山学院大学 私立 青山学院大学 2014年 第4問
次の問に答えよ.

(1)$y=\log x$のグラフをもとにして,$y=\log (3-x)$と$\displaystyle y=\log \frac{4}{x+2}$のグラフをかけ.
(2)曲線$y=\log (3-x)$と曲線$\displaystyle y=\log \frac{4}{x+2}$で囲まれた図形の面積を求めよ.
広島修道大学 私立 広島修道大学 2014年 第3問
直線$y=-x+5$を$\ell$とするとき,次の問に答えよ.

(1)曲線$y=x^3-3x^2+2x+4$上の点$\mathrm{P}$における接線が直線$\ell$であるとき,点$\mathrm{P}$の座標を求めよ.
(2)$b,\ c$を定数とする,放物線$y=x^2+bx+c$上の点$\mathrm{Q}$における接線が直線$\ell$であるとき,定数$c$の値が最小となるように点$\mathrm{Q}$の座標を定めよ.
日本女子大学 私立 日本女子大学 2014年 第4問
$a,\ b,\ c,\ d$を定数で$a \neq 0$であるものとし,曲線$y=ax^3+bx^2+cx+d$と直線$y=2x-1$は,$x$座標が$2$である点で接し,$x$座標が$-1$である点で交わるものとする.

(1)$b,\ c,\ d$を$a$で表せ.
(2)これらの曲線と直線で囲まれた図形の面積が$\displaystyle \frac{9}{2}$であるとき,$a$の値を求めよ.
日本女子大学 私立 日本女子大学 2014年 第3問
$a$を実数とする.曲線$y=-x^3-x^2+x$と直線$y=a$との共有点の個数は,$a$の値によってどのように変わるかを調べよ.
早稲田大学 私立 早稲田大学 2014年 第3問
条件$\log_2 (y-1)=\log_2 (x-2)+\log_2 (x-3)$を満たす点$(x,\ y)$全体の集合が$xy$平面上に描く曲線を$A$とする.次の問に答えよ.

(1)曲線$A$を図示せよ.
(2)直線$y=\alpha x+\beta$が曲線$A$の接線であるとき,$\alpha$と$\beta$の間に成り立つ関係式を求めよ.また,$\alpha$と$\beta$の取り得る値の範囲を求めよ.
(3)直線$y=ax+b$が曲線$A$と共有点をもたないような$a,\ b$の条件を求めよ.
津田塾大学 私立 津田塾大学 2014年 第2問
放物線$C_1:y=x^2$と放物線$C_2:y=-(x-a)^2+b$が点$\mathrm{P}(t,\ t^2) (t>0)$において接している.

(1)$a$と$b$を$t$を用いて表せ.
(2)曲線$C_2$と$x$軸との交点のうち,$x$座標の小さい点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.$C_1$と$C_2$と線分$\mathrm{OQ}$で囲まれた部分の面積を$S_1$とし,$C_2$と線分$\mathrm{OQ}$と$y$軸で囲まれた部分の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$は$t$に無関係な値であることを示せ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。