タグ「曲線」の検索結果

48ページ目:全1320問中471問~480問を表示)
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)=e^{1+\sin^2 x}$の導関数$f^\prime(x)$を求めよ.
(2)条件$a_1=1$,$a_2=2$,$a_{n+2}=3a_{n+1}-2a_n (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$の一般項を求めよ.
(3)関数$\displaystyle f(x)=\frac{4x}{x^2+1}$の増減,極値,グラフの凹凸,変曲点および漸近線を調べ,曲線$y=f(x)$の概形をかけ.
山梨大学 国立 山梨大学 2014年 第3問
座標平面上の原点を$\mathrm{O}$,曲線$y=x^3$上の点$\mathrm{P}(t,\ t^3) (t>0)$における接線と$x$軸との交点を$\mathrm{Q}$とし,また$\alpha=\angle \mathrm{POQ}$,$\beta=\angle \mathrm{OPQ}$とする.

(1)点$\mathrm{Q}$の座標を$t$を用いた式で表せ.
(2)$\tan \alpha$および$\tan \beta$を$t$を用いた式で表せ.
(3)$\tan \beta$が最大となるような$t$とそのときの$\beta$の値を求めよ.
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
山形大学 国立 山形大学 2014年 第2問
$xy$平面上の曲線$C:y=\sqrt{x}$がある.曲線$C$上の点$\mathrm{P}(t,\ \sqrt{t}) (t>0)$における接線を$\ell$とする.さらに,直線$\ell$と$x$軸の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PR}$とするとき,$\triangle \mathrm{PQR}$を$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
(4)曲線$C$,直線$\ell$および$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
九州工業大学 国立 九州工業大学 2014年 第4問
関数$\displaystyle f(x)=-\tan x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$,$\displaystyle g(x)=\sin 2x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$について,次に答えよ.

(1)不定積分$\displaystyle \int \tan x \, dx$,$\displaystyle \int \tan^2 x \, dx$を求めよ.
(2)$b>0$とする.曲線$y=g(x)$および$3$直線$y=-b$,$x=0$,$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$y=-b$のまわりに$1$回転してできる立体の体積$V_1$を$b$を用いて表せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$のとき,不等式$f(x)+g(x) \geqq 0$を示せ.
(4)$2$曲線$y=f(x)$,$y=g(x)$および直線$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$\displaystyle y=-\frac{1}{\sqrt{3}}$のまわりに$1$回転してできる立体の体積$V_2$を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第3問
座標平面上の曲線$C:y=x^3-x$を考える.$C$上の点$(-a,\ -a^3+a)$と$(a,\ a^3-a)$ $(a>0)$における$C$の接線をそれぞれ$\ell_1$,$\ell_2$とする.また,$\ell_1$と$C$との$(-a,\ -a^3+a)$以外の共有点を$\mathrm{P}_1$,$\ell_2$と$C$との$(a,\ a^3-a)$以外の共有点を$\mathrm{P}_2$とする.さらに,$\mathrm{P}_2$を通り$y$軸に平行な直線と$\ell_1$の交点を$\mathrm{Q}_1$,$\mathrm{P}_1$を通り$y$軸に平行な直線と$\ell_2$の交点を$\mathrm{Q}_2$とする.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$の座標を求めよ.
(2)$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線と$C$で囲まれる$2$つの図形の面積の和を$S_1$,四角形$\mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2 \mathrm{Q}_2$の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+D$($D$は積分定数)を用いてよい.
山形大学 国立 山形大学 2014年 第1問
$-a<x<a$で定義された曲線$C:y=x \sqrt{a^2-x^2}$がある.ただし$a$は正の定数とする.以下の問いに答えよ.

(1)$y$の増減を調べ,曲線$C$の概形をかけ.
(2)曲線$C$と直線$\displaystyle L:y=\frac{1}{\sqrt{3}}x$が$3$つの共有点を持つような定数$a$の値の範囲を求めよ.またそのときの共有点の$x$座標をすべて求めよ.
(3)$3$つの共有点のうち,$x$座標の値が最も大きい点を$\mathrm{P}$とする.点$\mathrm{P}$における曲線$C$の接線と,直線$L$および$y$軸で囲まれる三角形が正三角形になるときの定数$a$の値を求め,その正三角形の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。