タグ「曲線」の検索結果

44ページ目:全1320問中431問~440問を表示)
千葉大学 国立 千葉大学 2014年 第5問
以下の問いに答えよ.

(1)$t>0$のとき
\[ e^t>1+t+\frac{t^2}{2}+\frac{t^3}{6} \]
が成り立つことを示せ.
(2)座標平面上の点$(0,\ a)$を通って曲線$y=xe^x$に何本の接線が引けるか求めよ.
埼玉大学 国立 埼玉大学 2014年 第3問
$\displaystyle f(x)=x^3-\frac{1}{2}x$とする.曲線$C:y=f(x)$上に$2$点$\mathrm{P}(t,\ f(t))$,$\mathrm{Q}(-t,\ f(-t))$ $(t>0)$をとり,点$\mathrm{P}$における接線と法線,および,点$\mathrm{Q}$における接線と法線によって囲まれる図形を$A$とする.

(1)点$\mathrm{P}$における接線を$\ell_1$,法線を$\ell_2$とし,原点$(0,\ 0)$と$\ell_1$,$\ell_2$との距離をそれぞれ$d_1,\ d_2$とおく.$d_1,\ d_2$を$t$を用いて表せ.
(2)$(1)$で定めた$d_1,\ d_2$に対し,$d_1=d_2$となるような$t$の値をすべて求めよ.
(3)$(2)$で求めたそれぞれの$t$の値に対し,図形$A$の面積を求めよ.
筑波大学 国立 筑波大学 2014年 第2問
$xy$平面上の曲線$C:y=x \sin x+\cos x-1 (0<x<\pi)$に対して,以下の問いに答えよ.ただし$\displaystyle 3<\pi<\frac{16}{5}$であることは証明なしで用いてよい.

(1)曲線$C$と$x$軸の交点はただ$1$つであることを示せ.
(2)曲線$C$と$x$軸の交点を$\mathrm{A}(\alpha,\ 0)$とする.$\displaystyle \alpha>\frac{2}{3}\pi$であることを示せ.
(3)曲線$C$,$y$軸および直線$\displaystyle y=\frac{\pi}{2}-1$で囲まれる部分の面積を$S$とする.また,$xy$平面の原点$\mathrm{O}$,点$\mathrm{A}$および曲線$C$上の点$\displaystyle \mathrm{B} \left( \frac{\pi}{2},\ \frac{\pi}{2}-1 \right)$を頂点とする三角形$\mathrm{OAB}$の面積を$T$とする.$S<T$であることを示せ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を$a>2$である実数とする.$xy$平面上の曲線$\displaystyle C:y=\frac{1}{\sin x \cos x} (0<x<\frac{\pi}{2})$と直線$y=a$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.以下の問いに答えよ.

(1)$\tan \alpha$および$\tan \beta$を$a$を用いて表せ.
(2)$C$と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた領域を$S$とする.$S$の面積を$a$を用いて表せ.
(3)$S$を$x$軸の周りに回転して得られる立体の体積$V$を$a$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を正の実数とする.$xy$平面上の曲線$C:y=e^{ax}$の接線で,原点を通るものを$\ell$とし,$C$と$\ell$および$y$軸で囲まれた領域を$S$とする.以下の問いに答えよ.

(1)$S$を$x$軸の周りに回転して得られる立体の体積$V_1$を求めよ.
(2)$S$を$y$軸の周りに回転して得られる立体の体積$V_2$を求めよ.
(3)$V_1=V_2$となるときの$a$の値を求めよ.
新潟大学 国立 新潟大学 2014年 第4問
関数$f(x)=(-4x^2+2)e^{-x^2}$について,次の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を$a \geqq 0$となる実数とし,$\displaystyle I(a)=\int_0^a e^{-x^2} \, dx$とする.このとき,定積分$\displaystyle \int_0^a x^2e^{-x^2} \, dx$を$a,\ I(a)$を用いて表せ.
(3)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=5$で囲まれる部分の面積を求めよ.
新潟大学 国立 新潟大学 2014年 第4問
座標平面上の曲線$y=|x^2+2x|$を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$と直線$y=x+2$の共有点の座標を求めよ.
(2)曲線$C$と直線$y=x+2$で囲まれた部分の面積を求めよ.
(3)曲線$C$と直線$y=x+a$がちょうど$2$つの共有点をもつような実数$a$の値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第4問
$f(x)=\log (x+\sqrt{x^2+1})$とし,曲線$y=f(x)$を$C$とする.ただし,対数は自然対数である.

(1)$f(x)$の導関数を求めよ.
(2)曲線$C$と直線$y=1$の交点$\mathrm{P}$の座標を求めよ.
(3)曲線$C$,直線$y=1$および$y$軸で囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。