タグ「曲線」の検索結果

40ページ目:全1320問中391問~400問を表示)
東京理科大学 私立 東京理科大学 2015年 第2問
$s$を$-1 \leqq s \leqq 1$を満たす実数とする.$xy$平面上のベクトル$\overrightarrow{a_s},\ \overrightarrow{b_s},\ \overrightarrow{c_s}$を
\[ \overrightarrow{a_s}=\left( s,\ \sqrt{1-s^2} \right),\quad \overrightarrow{b_s}=\left( \sqrt{1-s^2},\ -s \right),\quad \overrightarrow{c_s}=\left( s \sqrt{1+s^2},\ \sqrt{1-s^4} \right) \]
と定める.$t$を実数とし,$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を


$\displaystyle \overrightarrow{a_s}+\frac{t}{|\overrightarrow{b_s}|} \overrightarrow{b_s}=(f_t(s),\ g_t(s))$

$\displaystyle \overrightarrow{a_s}-\frac{t}{|\overrightarrow{c_s}|} \overrightarrow{c_s}=(h_t(s),\ k_t(s))$


により定める.さらに,$s$を媒介変数とする$2$つの曲線

$\displaystyle C_t:x=f_t(s),\ y=g_t(s) \quad \left( -\frac{1}{2} \leqq s \leqq 1 \right),$
$K_t:x=h_t(s),\ y=k_t(s) \quad (-1 \leqq s \leqq 1)$

を考える.次の各問いに答えよ.

(1)$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を$s$と$t$を用いて表せ.
(2)$\overrightarrow{a_s}$と$\overrightarrow{b_s}$のなす角,および,$\overrightarrow{a_s}$と$\overrightarrow{c_s}$のなす角を求めよ.
(3)${f_t(s)}^2+{g_t(s)}^2$を$t$のみを用いて表せ.
(4)$t$が$0$から$\sqrt{3}$まで動くとき,$C_t$が通過する部分を$D$とする.$D$を図示せよ.
(5)$(4)$で定めた$D$の面積を求めよ.
(6)$(4)$で定めた$D$を$x$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
(7)$K_{\frac{1}{2}},\ K_1,\ K_{\frac{3}{2}}$を図示せよ.
(8)$t$が$\displaystyle \frac{1}{2} \leqq |t-1| \leqq 1$を満たす範囲を動くとき,$K_t$が通過する部分の面積を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第2問
曲線$y=x^3-2x \cdots\cdots①$と直線$y=x+k \cdots\cdots②$がある.

(1)$k$の範囲が$[$4$]$のとき,曲線$①$と直線$②$は異なる$3$点を共有する.
(2)$k>0$とする.曲線$①$と直線$②$が異なる$2$点を共有するとき,$1$つは接点で,もう$1$つの共有点の$x$座標は$[$5$]$である.
久留米大学 私立 久留米大学 2015年 第2問
$x=\sin t$,$y=\sin 2t$で表される曲線がある.ただし$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$とする.

(1)$y$を$x$で表すと$y=[$4$]$となる.
(2)曲線と$x$軸とで囲まれた部分の面積は$[$5$]$である.
久留米大学 私立 久留米大学 2015年 第4問
$x$は実数で,関数$f(x)$は$x>0$において$f(x)=(x^x-1)(\log_e x+1)$と定義されている.

(1)$f(x)=0$となる$x$の値は,$[$10$]$である.
(2)$x^x$の導関数は$[$11$]$となる.
(3)曲線$y=f(x)$と$x$軸とで囲まれた部分の面積は$[$12$]$である.
東京薬科大学 私立 東京薬科大学 2015年 第4問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

$y=x^3-2x$の表す曲線$C$がある.

(1)$\alpha \neq 0$のとき,$C$上の点$\mathrm{P}(\alpha,\ \alpha^3-2 \alpha)$における接線$\ell$の方程式は
\[ y=([$*$あ] \alpha^2+[$*$い])x+[$*$う] \alpha^3 \]
である.
(2)$\ell$が再び$C$と交わる点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[$*$え] \alpha$であり,線分$\mathrm{PQ}$と$C$とで囲まれる図形の面積は$\displaystyle \frac{[おか]}{[き]} \alpha^4$である.
(3)$\alpha>0$,線分$\mathrm{PQ}$の長さを$L$とするとき,$\displaystyle \frac{L^2}{\alpha^2}$が最小になるのは$\displaystyle \alpha=\frac{\sqrt{[く]}}{[け]}$のときである.
(4)原点を除く直線$y=[$*$こ]x$上の点からは,$C$への接線がちょうど$2$本引ける.
首都大学東京 公立 首都大学東京 2015年 第4問
座標平面において曲線$y=k(1-x^2)-1$($k$は正の定数)を$C_1$とし,曲線$y=1-|x|$を$C_2$とする.このとき,以下の問いに答えなさい.

(1)$C_1$は$k$の値によらない定点を通る.この定点の座標をすべて求めなさい.
(2)$C_1$と$C_2$が共有点をもつような正の定数$k$の値の範囲を求めなさい.
(3)正の定数$k$が$(2)$で求めた範囲にあるとき,$C_1$と$C_2$の共有点の個数を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第1問
以下の問いに答えなさい.

(1)次の不定積分を求めなさい.
\[ \int e^{-2x} \cos 2x \, dx \]
(2)$n$を正の整数とする.曲線
\[ y=e^{-x} \sin x \quad ((n-1) \pi \leqq x \leqq n\pi) \]
と$x$軸で囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積$V_n$を求めなさい.
(3)$(2)$で求めた$V_n$に対して,$\displaystyle \sum_{n=1}^\infty V_{2n-1}=V_1+V_3+V_5+\cdots$を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第3問
座標平面において曲線$\displaystyle y=\frac{3}{x^2+3}$を$C_1$,曲線$y=x^2+k$($k$は定数)を$C_2$とする.$C_1$と$C_2$のすべての共有点において互いの接線が直交しているとき,以下の問いに答えなさい.

(1)定数$k$の値を求めなさい.また,$C_1$と$C_2$のすべての共有点の座標を求めなさい.
(2)$C_1$と$C_2$で囲まれる部分の面積$S$を求めなさい.
大阪市立大学 公立 大阪市立大学 2015年 第2問
関数$f(x),\ g(x)$を$f(x)=e^{-x}\sin x$,$g(x)=e^{-x}\cos x$とおく.$f(x),\ g(x)$の不定積分を$\displaystyle I=\int f(x) \, dx$,$\displaystyle J=\int g(x) \, dx$とおく.$k$を自然数とし,$(k-1) \pi \leqq x \leqq k\pi$において,$2$つの曲線$y=f(x)$,$y=g(x)$,および$2$直線$x=(k-1) \pi$,$x=k\pi$で囲まれる$2$つの部分の面積の和を$S_k$とおく.次の問いに答えよ.

(1)$I=J+F(x)+C_1$,$J=-I+G(x)+C_2$を満たす関数$F(x)$,$G(x)$を求めよ.ただし,$C_1$,$C_2$は積分定数である.
(2)$I,\ J$を求めよ.
(3)$S_k$を求めよ.
(4)$\displaystyle \sum_{k=1}^\infty S_k$を求めよ.
岡山県立大学 公立 岡山県立大学 2015年 第3問
関数$f(x)=(1-x)e^{2x}$について,次の問いに答えよ.

(1)$f(x)$の最大値を求めよ.
(2)曲線$y=f(x)$と直線$y=1-x$とで囲まれた部分の面積を求めよ.
(3)曲線$y=f(x)$上の点$(0,\ 1)$における接線を$\ell$とする.曲線$y=f(x)$と直線$\ell$との交点は$(0,\ 1)$のみであることを示せ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。