タグ「曲線」の検索結果

39ページ目:全1320問中381問~390問を表示)
東京都市大学 私立 東京都市大学 2015年 第2問
曲線$y=\sin x (0 \leqq x \leqq 2\pi)$を$F$,曲線$\displaystyle y=\frac{1}{\sqrt{3}} \sin 2x (0 \leqq x \leqq 2\pi)$を$G$とする.

(1)$F$と$G$の交点の座標をすべて求めよ.
(2)$xy$平面上に$F$と$G$を図示せよ.$(1)$で求めた交点の座標に加え,軸との交点の座標もかくこと.
(3)$F$と$G$で囲まれた部分(境界線を含む)に含まれる点のうち,$x$と$y$がともに整数となる点の座標をすべて求めよ.
東京都市大学 私立 東京都市大学 2015年 第4問
次の問に答えよ.

(1)曲線$y=\cos (\pi x)$上の点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$における接線の方程式を求めよ.
(2)$a,\ b$を定数とする.放物線$y=a(x-b)^2$が点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$を通り,点$\mathrm{P}$におけるこの放物線の接線が$(1)$で求めた接線と一致するとき,$a,\ b$を求めよ.
(3)$(2)$で求めた$a,\ b$に対し
\[ f(x)=\left\{ \begin{array}{ll}
\cos \pi x & \left( x \leqq \displaystyle\frac{9}{4} \right) \\
a(x-b)^2 & \left( x \geqq \displaystyle\frac{9}{4} \right) \phantom{\frac{[ ]^{[ ]}}{2}}
\end{array} \right. \]
とする.$y=f(x)$のグラフをかけ.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=2 \sqrt{1-x^2}$に対し,曲線$y=f(x)$上の点$\mathrm{P}(a,\ 2 \sqrt{1-a^2})$における接線を$\ell$とする.$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の長さを$d$とするとき,次の問いに答えよ.ただし,$0<a<1$とする.

(1)$f(x)$を微分せよ.
(2)直線$\ell$の方程式を求めよ.
(3)$d^2$を$a$を用いて表せ.
(4)$d$の値が最小となるような$a$の値と,そのときの$d$の値を求めよ.
中部大学 私立 中部大学 2015年 第3問
$a$を定数として,曲線$y=x^3+x^2+a$に関する次の問いに答えよ.

(1)$x=t$における曲線の接線の方程式を求めよ.
(2)$(1)$の接線が$(1,\ 0)$を通るとき,$a$を$t$の関数として求めよ.
(3)$(2)$の条件のもとで,接線が$3$本存在する$a$の範囲を求めよ.
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$\displaystyle x=\frac{2}{\sqrt{6}+\sqrt{2}},\ y=\frac{\sqrt{6}+\sqrt{2}}{2}$のとき,$x^3y+xy^3$の値は$[ ]$である.
(2)不等式$-3<x^2-4x<45$を満たす$x$の値の範囲は$[ ]$である.
(3)$3$次方程式$x^3-3x^2+4x-2=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とするとき$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=[ ]$である.
(4)座標平面上の$4$点$\mathrm{A}(2,\ -2)$,$\mathrm{B}(5,\ 1)$,$\mathrm{C}(6,\ -2)$,$\mathrm{D}(3,\ a)$に対し,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CD}}$が垂直になるのは$a=[ ]$のときである.
(5)$xy$平面上の$2$点$(0,\ 1)$,$(0,\ -1)$からの距離の和が$4$である曲線を
\[ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>0,\ b>0) \]
の形で表すと$(a,\ b)=[ ]$である.
東京経済大学 私立 東京経済大学 2015年 第4問
曲線$y=-x^2+kx+1$と$y=x^3$は点$\mathrm{P}$で接し,かつ点$\mathrm{P}$における接線が一致する.このとき,点$\mathrm{P}$の座標は$(-[ソ],\ -[タ])$,$k=[チ]$であり,その接線の方程式は$y=[ツ]x+[テ]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第8問
曲線$y=x^3-2x^2-3x$と$x$軸で囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[ホ][マ]}{[ミ]}$である.
昭和薬科大学 私立 昭和薬科大学 2015年 第2問
関数$\displaystyle f(x)=\frac{1}{6} \int_0^3 x^2f(t) \, dt-\frac{1}{12} \int_{-3}^0 xf(t) \, dt-2$に対して,$2$つの曲線$C_1:y=x^2+1$,$C_2:y=f(x)$を考える.

(1)$f(x)=px^2+qx-2$とすると,$p=[ナ][ニ]$,$q=[ヌ]$である.
(2)点$(a,\ f(a))$(ただし,$a>1$とする)における曲線$C_2$の接線$\ell$と曲線$C_1$との異なる$2$つの交点を結ぶ線分の中点が$(-1,\ b)$のとき,$b=[ネ]$であり,$\ell$の方程式は$y=[ノ][ハ]x+[ヒ]$である.
(3)$(2)$で求めた接線$\ell$と曲線$C_2$および$y$軸で囲まれた図形の面積は$\displaystyle \frac{[フ]}{[ヘ]}$である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第4問
以下の問いに答えなさい.

(1)次の定積分を求めなさい.ただし,$a$は正の定数とする.
\[ 1) \quad \int_0^a te^{-t} \, dt \qquad\qquad 2) \quad \int_0^a t^2 e^{-t} \, dt \]
(2)以下の空欄$[$1$]$~$[$5$]$に適切な値を答えなさい.

$x \geqq 0$で定義された関数$f(x)=(\sqrt{x}-1)e^{-\sqrt{x}}$に対して,$y=f(x)$の表す曲線を$C$とおく.$C$は$x=[$1$]$で極大値$[$2$]$をとる.$C$上の点$(t,\ f(t))$での接線が原点を通るのは$t=[$3$]$のときである.このときの接線を$\ell$とおくと,$\ell$の傾きは$[$4$]$となる.また,$C$,$\ell$と$y$軸で囲まれた部分の面積は$[$5$]$である.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。