タグ「曲線」の検索結果

36ページ目:全1320問中351問~360問を表示)
福岡大学 私立 福岡大学 2015年 第3問
関数$\displaystyle f(x)=\frac{2 \sqrt{x}}{1+\sqrt{x}}$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$(1,\ 1)$における接線の方程式を求めよ.
(2)点$(1,\ 1)$において接線と直交する直線を$\ell$とする.曲線$y=f(x)$,直線$\ell$および$x$軸で囲まれる図形の面積を求めよ.
広島工業大学 私立 広島工業大学 2015年 第2問
曲線$y=x^3+3x^2$について,次の問いに答えよ.

(1)曲線上の点$(t,\ t^3+3t^2)$における接線の方程式を求めよ.
(2)曲線に点$\mathrm{A}(1,\ -4)$から引いた接線の方程式を求めよ.
(3)曲線に点$\mathrm{P}(1,\ p)$から異なる$3$本の接線が引けるような$p$の値の範囲を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第1問
関数$f(x)=\sqrt{7x-3}-1$について考える.

(1)$f(x)$の逆関数は$\displaystyle f^{-1}(x)=\frac{[ア]}{[イ]}(x^2+[ウ]x+[エ]) (x \geqq [オカ])$である.
(2)曲線$y=f(x)$と直線$y=x$との交点の座標は$([キ],\ [ク])$,$([ケ],\ [コ])$である.ただし,$[キ]<[ケ]$とする.
(3)不等式$f^{-1}(x) \leqq f(x)$の解は$[サ] \leqq x \leqq [シ]$である.
金沢工業大学 私立 金沢工業大学 2015年 第3問
座標平面において,極方程式$r=2 \cos \theta$で表される曲線を$C$とし,$C$上において極座標が$\displaystyle \left(\sqrt{2},\ \frac{\pi}{4} \right)$,$(2,\ 0)$である点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.また,$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\mathrm{A}$を中心とし,線分$\mathrm{AB}$を半径にもつ円を$D$とする.

(1)曲線$C$は直交座標において点$([ア],\ [イ])$を中心とし,半径が$[ウ]$の円を表す.
(2)直線$\ell$の極方程式は$\displaystyle r \cos \left( \theta-\displaystyle\frac{\pi}{[エ]} \right)=\sqrt{[オ]}$である.
(3)円$D$の極方程式は$\displaystyle r=[カ] \sqrt{[キ]} \cos \left( \theta-\frac{\pi}{[ク]} \right)$である.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
東洋大学 私立 東洋大学 2015年 第2問
実数$k$は$0<k<2$をみたし,$xy$平面上の曲線$C$を$y=-x^2+4 (x \geqq 0)$,直線$\ell$を$y=4-k^2$とする.次の各問に答えよ.

(1)$y$軸,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_1$とすると,$\displaystyle S_1=\frac{[ア]}{[イ]}k^{\mkakko{ウ}}$となる.
(2)直線$x=2$,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_2$とすると,
\[ S_2=\frac{[エ]}{[オ]}k^{\mkakko{カ}}-[キ]k^{\mkakko{ク}}+\frac{[ケ]}{[コ]} \]
となる.
(3)$2$つの面積の和$S=S_1+S_2$を考える.$S$の最小値は$[サ]$である.このとき$k=[シ]$である.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
北里大学 私立 北里大学 2015年 第3問
直線$y=-2x+b$と曲線$y=|x(x-4)|$が$x$軸上にない共有点をちょうど$3$個もつとき,定数$b$の値は$[エ]$であり,$3$個の共有点の座標は$[オ]$,$[カ]$および$[キ]$である.さらにこのとき,この曲線と直線で囲まれた図形の面積は$[ク]$である.
学習院大学 私立 学習院大学 2015年 第3問
関数
\[ f(x)=\frac{\log x}{x} \quad (x>0) \]
を考える.

(1)$x$が正の実数全体を動くとき,$f(x)$の最大値と,最大値を与える$x$の値を求めよ.
(2)曲線$y=f(x)$の変曲点の座標を求めよ.
(3)不等式
\[ \int_1^n f(x) \, dx>2 \]
を満たす最小の自然数$n$を求めよ.ただし,自然対数の底$e$は$2.7<e<2.8$を満たすことを用いてよい.
愛知工業大学 私立 愛知工業大学 2015年 第2問
次の問いに答えよ.

(1)$xy$平面において,関数$\displaystyle y=\frac{\log x}{x^2} (x>0)$の増減を調べ,グラフの概形をかけ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x^2}=0$を用いてよい.
(2)$a$を定数とする.$xy$平面において,$2$つの曲線$y=ax^2$と$y=\log x$の共有点の個数を調べよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。