タグ「曲線」の検索結果

33ページ目:全1320問中321問~330問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第5問
$m \geqq 1$を整数とする.関数$f(x)=(\pi-x) \sin mx (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)=0$となるすべての$x (0 \leqq x \leqq \pi)$の値を,小さい順に$x_1,\ x_2,\ \cdots,\ x_N$で表す.このとき,$N$を$m$の式で表し,$x_k (k=1,\ 2,\ \cdots,\ N)$を$k$と$m$の式で表せ.
(2)$(1)$で定めた$x_k$と$x_{k+1} (k=1,\ 2,\ \cdots,\ N-1)$に対し,曲線$y=f(x) (x_k \leqq x \leqq x_{k+1})$と$x$軸で囲まれた図形の面積を$S_k$とするとき,$S_k$を$k$と$m$の式で表せ.
(3)$(2)$で求めた面積$S_k$の$k=1$から$N-1$までの和$\displaystyle \sum_{k=1}^{N-1} S_k$を求めよ.
山口大学 国立 山口大学 2015年 第3問
曲線$2x^2+y^2-4y=0$を$C$とする.このとき,次の問いに答えなさい.

(1)曲線$C$の概形をかきなさい.
(2)点$\mathrm{P}(x,\ y)$が曲線$C$上を動くとき,$xy$の最大値と最小値を求めなさい.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第3問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
$f(x)=(x-1) |x-3|-4x+12$とする.また,曲線$y=f(x)$上の点$\mathrm{P}(1,\ f(1))$における接線を$\ell$とする.以下に答えなさい.

(1)$y=f(x)$のグラフをかきなさい.
(2)直線$\ell$の方程式を求めなさい.
(3)曲線$y=f(x)$と直線$\ell$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の座標を求めなさい.
(4)曲線$y=f(x)$と直線$\ell$で囲まれた図形の面積$S$を求めなさい.
早稲田大学 私立 早稲田大学 2015年 第1問
関数$\displaystyle f(x)=\frac{x}{\sqrt{1+x^2}}$について,次の問に答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)$t>0$を媒介変数として,$x=f^\prime(t)$,$y=f(t)-tf^\prime(t)$で表される曲線の概形を描け.
(3)$(2)$の曲線の接線が$x$軸と$y$軸によって切り取られてできる線分の長さは一定であることを示せ.
立教大学 私立 立教大学 2015年 第4問
$k$を実数とする.曲線$C:y=(x^2-1)^2$と直線$\ell:y=k$について,次の問いに答えよ.

(1)曲線$C$と直線$\ell$の共有点が異なる$4$点となるような$k$の値の範囲を求めよ.
(2)$k$が$(1)$で求めた範囲にあるとき,曲線$C$と直線$\ell$の共有点の$x$座標を小さい順に$x_1$,$x_2$,$x_3$,$x_4$とする.$x_1$,$x_2$,$x_3$,$x_4$をそれぞれ$k$を用いて表せ.
(3)$k$が$(1)$で求めた範囲にあるとき,曲線$C$と直線$\ell$で囲まれた部分を$y$軸のまわりに$1$回転してできる立体の体積$V$を$k$を用いて表せ.
(4)$(3)$で求めた体積$V$の最小値と,最小値を与える$k$の値をそれぞれ求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。