タグ「曲線」の検索結果

32ページ目:全1320問中311問~320問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第3問
二次関数$f(x)=x^2+ax+b$に関する以下の問いに答えよ.ただし,関数$f(x)$の導関数を$f^\prime(x)$とする.

【補足説明】$(2)$~$(5)$は,$(1)$で得られた$f(x)$を用いて解答すること.

(1)$f(x)$が$2f(x)=xf^\prime(x)+6$を満たすとき,$a=0$,$b=3$となることを示せ.
(2)点$(0,\ -1)$から曲線$y=f(x)$に引いた$2$本の接線が,$L_1:y=4x-1$,$L_2:y=-4x-1$になることを示せ.
(3)$2$本の接線$L_1,\ L_2$のなす角のうち鋭角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(4)曲線$y=f(x)$と$2$本の接線$L_1,\ L_2$で囲まれた部分の面積を求めよ.
(5)曲線$y=f(x)$と$2$本の接線$L_1,\ L_2$で囲まれた部分を,$y$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
筑波大学 国立 筑波大学 2015年 第4問
$f(x)=\log (e^x+e^{-x})$とおく.曲線$y=f(x)$の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と$y$軸の交点の$y$座標を$b(t)$とおく.

(1)次の等式を示せ.
\[ b(t)=\frac{2te^{-t}}{e^t+e^{-t}}+\log (1+e^{-2t}) \]
(2)$x \geqq 0$のとき,$\log (1+x) \leqq x$であることを示せ.
(3)$t \geqq 0$のとき,
\[ b(t) \leqq \frac{2}{e^t+e^{-t}}+e^{-2t} \]
であることを示せ.
(4)$\displaystyle b(0)=\lim_{x \to \infty} \int_0^x \frac{4t}{(e^t+e^{-t})^2} \, dt$であることを示せ.
筑波大学 国立 筑波大学 2015年 第5問
$f(x),\ g(x),\ h(x)$を

$\displaystyle f(x)=\frac{1}{2}(\cos x-\sin x)$

$\displaystyle g(x)=\frac{1}{\sqrt{2}} \sin \left( x+\frac{\pi}{4} \right)$

$h(x)=\sin x$

とおく.$3$つの曲線$y=f(x)$,$y=g(x)$,$y=h(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$を満たす部分を,それぞれ$C_1$,$C_2$,$C_3$とする.

(1)$C_2$と$C_3$の交点の座標を求めよ.
(2)$C_1$と$C_3$の交点の$x$座標を$\alpha$とする.$\sin \alpha$,$\cos \alpha$の値を求めよ.
(3)$C_1$,$C_2$,$C_3$によって囲まれる図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2015年 第3問
$t$は実数で$\displaystyle 0<t<\frac{\pi}{2}$を満たすとする.平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 0)$,$\mathrm{P}(\cos t,\ \sin t)$,$\mathrm{Q}(1,\ \sin t)$をとる.このとき以下の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線を$\ell$,点$\mathrm{O}$と点$\mathrm{Q}$を通る直線を$m$とする.このとき$\ell,\ m$の交点$\mathrm{R}$の座標を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲全体を動くときに点$\mathrm{R}$が描く曲線を$C$とする.このとき,点$(x,\ y) (x>0,\ y>0)$が$C$上にあるための条件を$x,\ y$の式で表せ.
(3)曲線$C$の点$\mathrm{R}$における接線を$n$とする.ある$t$に対して直線$\ell,\ m$がなす鋭角と直線$m,\ n$がなす鋭角が等しくなる.この状況のもとで,以下の問いに答えよ.

(i) 点$\mathrm{P}(\cos t,\ \sin t)$の座標を求めよ.
(ii) 直線$\ell$と$n$のなす鋭角を$\theta$とおく.また,点$\mathrm{O}$を中心とし半径が$1$の円と直線$n$との$2$交点のうち,$y$座標が正の点を$\mathrm{S}(\cos \phi,\ \sin \phi)$とおく.このとき,$\theta=\phi$を示せ.
福島大学 国立 福島大学 2015年 第4問
次の$2$つの曲線のどちらにも接する直線の方程式$y=ax+b$を求めなさい.
\[ \left\{ \begin{array}{l}
y=-2x^3+3 \\
y=-2x^3-1
\end{array} \right. \]
福島大学 国立 福島大学 2015年 第3問
次の問いに答えなさい.

(1)$\displaystyle \sum_{k=1}^n \frac{k}{2^k}$を求めなさい.
(2)定積分$\displaystyle \int_0^1 \frac{dx}{x^2-2x-3}$を求めなさい.

(3)曲線$y=\sqrt{x^2-1}$の$1 \leqq x \leqq 2$の部分を$y$軸のまわりに回転してできる回転体の体積を求めなさい.
(4)曲線$y=xe^x+1$の$x=1$に対応する点における接線と法線の方程式を求めなさい.
山口大学 国立 山口大学 2015年 第1問
曲線$2x^2+y^2-4y=0$を$C$とする.点$\mathrm{P}(x,\ y)$が曲線$C$上を動くとき,$xy$の最大値と最小値を求めなさい.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。