タグ「曲線」の検索結果

27ページ目:全1320問中261問~270問を表示)
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
和歌山大学 国立 和歌山大学 2015年 第4問
関数$f(x)$と定数$a,\ b$が次の等式を満たしている.
\[ \int_0^x (x-t)f(t) \, dt=e^x+2e^{-x}-\frac{3}{2}x^2+ax+b \]
ただし,$e$は自然対数の底である.次の問いに答えよ.

(1)関数$f(x)$と定数$a,\ b$を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた部分の面積$S$を求めよ.
和歌山大学 国立 和歌山大学 2015年 第5問
点$\mathrm{P}(3,\ 2)$から楕円$\displaystyle C:\frac{x^2}{3}+\frac{y^2}{4}=1$に$2$本の接線$\ell_1,\ \ell_2$を引き,それぞれの接点の座標を$(a,\ b)$,$(c,\ d)$とする.ただし,$a<c$とする.次の問いに答えよ.

(1)接点の座標$(a,\ b)$,$(c,\ d)$を求めよ.
(2)$C$の$x \geqq 0$の部分を曲線$C_0$とするとき,$C_0$と$\ell_1$および$\ell_2$で囲まれた部分の面積$S$を求めよ.
岐阜大学 国立 岐阜大学 2015年 第4問
関数$f(x)=x^3-3x^2+x$を考える.曲線$y=f(x)$を$C$とする.以下の問に答えよ.

(1)$y=f(x)$の増減を調べて極値を求めよ.またグラフを描け.
(2)$a$を実数とする.直線$y=ax$と$C$の共有点が異なる$2$点のみであるときの$a$の値をすべて求めよ.また,求めたそれぞれの$a$の値に対して,共有点の$x$座標を求めよ.
(3)$C$上の点$\mathrm{P}(t,\ f(t))$における接線を$\ell$とする.$\ell$と$C$の共有点が$\mathrm{P}$のみであるとき,$t$が満たす条件を求めよ.
岐阜大学 国立 岐阜大学 2015年 第4問
関数$f(x)=e^{-x}$を考える.曲線$y=f(x)$を$C$とする.$t>0$として,曲線$C$上の点$(t,\ f(t))$における接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.以下の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)原点を$\mathrm{O}$とするとき,$\triangle \mathrm{OPQ}$の面積を$S$とする.$t$が変化するとき,$S$の最大値を求めよ.また,そのときの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(3)$C$と$(2)$で求めた$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
岐阜大学 国立 岐阜大学 2015年 第5問
次の問に答えよ.

(1)$\alpha,\ \beta$を$\displaystyle \alpha,\ \beta \neq n\pi+\frac{\pi}{2}$($n$は整数)とする.$\alpha,\ \beta$が$\tan \alpha \tan \beta=1$を満たすとき,ある整数$k$があって,$\displaystyle \alpha+\beta=k\pi+\frac{\pi}{2}$となることを示せ.
(2)$\displaystyle -\frac{\pi}{6}<x<\frac{\pi}{6}$とし,$t=\tan x$とおく.$\tan 3x$を$t$の式で表せ.
(3)$c$を実数とする.$\displaystyle -\frac{\pi}{6}<x<\frac{\pi}{6}$のとき,$2$曲線$y=c \tan x$と$y=\tan 3x$の共有点の個数を求めよ.
名古屋大学 国立 名古屋大学 2015年 第3問
$e$を自然対数の底とし,$t$を$t>e$となる実数とする.このとき,曲線$C:y=e^x$と直線$y=tx$は相異なる$2$点で交わるので,交点のうち$x$座標が小さいものを$\mathrm{P}$,大きいものを$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.また,$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線との交点を$\mathrm{R}$とし,曲線$C$,$x$軸および$2$つの直線$x=\alpha$,$x=\beta$で囲まれる部分の面積を$S_1$,曲線$C$および$2$つの直線$\mathrm{PR}$,$\mathrm{QR}$で囲まれる部分の面積を$S_2$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{S_2}{S_1}$を$\alpha$と$\beta$を用いて表せ.
(2)$\displaystyle \alpha<\frac{e}{t},\ \beta<2 \log t$となることを示し,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.必要ならば,$x>0$のとき$e^x>x^2$であることを証明なしに用いてよい.
滋賀大学 国立 滋賀大学 2015年 第3問
$a$を正の定数とし,曲線$C:y=|x^2-x|$と直線$\ell:y=ax$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$S$を$a$を用いて表せ.
(2)$a$を変化させたとき,$S$の最小値とそのときの$a$の値を求めよ.
茨城大学 国立 茨城大学 2015年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)関数$f(x)=x^2 \sqrt{1+\log x}$の$x=e^3$における微分係数$f^\prime(e^3)$を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$y=\sin x$と$\displaystyle y=\sin \frac{x}{2}$で囲まれた部分の面積を求めよ.
(3)極限$\displaystyle \lim_{x \to 2}\frac{1}{x^3-8} \int_2^x t^2 \, 2^{t^2} \, dt$を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。