タグ「曲線」の検索結果

25ページ目:全1320問中241問~250問を表示)
室蘭工業大学 国立 室蘭工業大学 2015年 第2問
関数$f(x)$を
\[ f(x)=(x^2-6x+8) e^{-x} \]
と定める.ただし,$e$は自然対数の底とする.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2015年 第3問
$a$を定数とし,$\displaystyle 0<a<\frac{\pi}{2}$とする.媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\cos^3 t \\
y=\sin^3 t \phantom{2^{\mkakko{}}} \!\!\!\!\!\!\!\!\!\!
\end{array} \right. \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表される曲線を$C$とする.また,$C$の$0 \leqq t \leqq a$の部分の長さを$L$とする.

(1)$L$を$a$を用いて表せ.ただし,$L$は$\displaystyle L=\int_0^a \sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$と表される.
(2)曲線$C$上の点$\mathrm{P}(\cos^3 a,\ \sin^3 a)$における接線$\ell$の方程式を求めよ.また,$\ell$と$x$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$M$とするとき,$\displaystyle L=\frac{3}{2}M$が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第5問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と直線$x=1$,および$x$軸,$y$軸で囲まれた部分を,$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
福井大学 国立 福井大学 2015年 第3問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
福井大学 国立 福井大学 2015年 第4問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
福井大学 国立 福井大学 2015年 第5問
$2$つの関数$f(x)=x^2+4$,$g(x)=x^2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線の方程式を求めよ.
(2)$(1)$で求めた接線と,曲線$y=g(x)$との交点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$y=g(x)$の,点$\mathrm{A}$における接線と点$\mathrm{B}$における接線との交点を$\mathrm{C}$とする.点$\mathrm{C}$の座標を求めよ.また,点$\mathrm{C}$は曲線$y=x^2-4$上にあることを示せ.
(3)直線$\mathrm{AB}$と曲線$y=g(x)$で囲まれた部分の面積は,$a$の値によらずに一定であることを示せ.
福井大学 国立 福井大学 2015年 第2問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第2問
次の問いに答えよ.

(1)関数$y=3 |x^2-2x-3|$のグラフをかけ.
(2)$1<t<3$を満たす定数$t$を考える.曲線$y=3 |x^2-2x-3|$の$t \leqq x \leqq t+2$における部分と$x$軸,および$2$直線$x=t$,$x=t+2$で囲まれた図形の面積$S(t)$を求めよ.
(3)$t$が$1<t<3$の範囲を動くときの$S(t)$の最小値と,そのときの$t$の値を求めよ.
山梨大学 国立 山梨大学 2015年 第2問
座標平面上において,曲線$C:y=e^{2x}$上の点$\mathrm{P}(a,\ e^{2a})$における接線$\ell$は原点$\mathrm{O}$を通るとする.

(1)$a$の値を求めよ.
(2)不定積分$\displaystyle \int \log t \, dt$および$\displaystyle \int (\log t)^2 \, dt$を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。